Pregunta
upstudy study bank question image url

A set of constraints and a profit function are given. Answer parts (a) and (b). \( x+y \leq 5 \) \( x+3 y \leq 9 \) \( x \geq 0 \) \( y \geq 0 \) \( P=5 x+4 y \) a) Graph the constraint s, shade the feasible region, and determine its vertices.

Ask by Turnbull Parsons. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The feasible region is the area in the first quadrant bounded by the lines \( x + y = 5 \) and \( x + 3y = 9 \). Its vertices are at (0,0), (0,3), (3,2), and (5,0).

Solución

We start with the constraints:  1) x + y ≤ 5  2) x + 3y ≤ 9  3) x ≥ 0  4) y ≥ 0  Profit function: P = 5x + 4y Step 1. Graph the constraints.  • For x + y = 5, the line crosses the x-axis at (5, 0) and the y-axis at (0, 5). Since x + y ≤ 5, the area below (or on) this line is part of the feasible region.  • For x + 3y = 9, the line crosses the x-axis at (9, 0) and the y-axis at (0, 3). Since x + 3y ≤ 9, the area below (or on) this line is included.  • x ≥ 0 and y ≥ 0 mean that only the first quadrant is considered. Step 2. Determine the vertices of the feasible region.  A. Intersection with the axes:   – The origin (0, 0) is an obvious vertex.   – With x = 0:    • x + y = 5 gives (0, 5) but note that (0, 5) must also satisfy x + 3y ≤ 9. Check: 0 + 3(5) = 15 > 9, so (0, 5) is outside.    • x + 3y = 9 gives (0, 3). And (0, 3) satisfies x + y = 3 ≤ 5.  B. Intersection of x + y = 5 and y = 0 gives (5, 0), and it satisfies x + 3y = 5 ≤ 9.  C. Intersection of the two lines:   Solve x + y = 5 and x + 3y = 9 simultaneously.   Subtract the first equation from the second:    (x + 3y) – (x + y) = 9 – 5    2y = 4    y = 2   Substitute y = 2 in x + y = 5:    x = 5 – 2 = 3   This gives the vertex (3, 2).  D. Finally, we note that (9, 0) is the intercept of x + 3y = 9, but it does not satisfy x + y ≤ 5 because 9 > 5. Step 3. List the vertices of the feasible region.  The feasible region is the polygon with vertices:   • (0, 0)   • (0, 3)   • (3, 2)   • (5, 0) Step 4. Graphing:  On a coordinate system, draw the line x + y = 5 connecting (5, 0) and (0, 5) and only consider the part in the first quadrant. Similarly, draw the line x + 3y = 9 connecting (9, 0) and (0, 3). Then shade the area that satisfies both inequalities (the area below both lines) along with x ≥ 0 and y ≥ 0. The intersection of these shaded regions is your feasible region. Answer (a): • The feasible region is the shaded region in the first quadrant bounded by the lines x + y = 5 and x + 3y = 9. • Its vertices are (0, 0), (0, 3), (3, 2), and (5, 0).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To graph the constraints, start by converting the inequalities into equations: 1. For \( x + y = 5 \): When \( x = 0 \), \( y = 5 \), and when \( y = 0 \), \( x = 5 \). This line intersects the axes at points (0,5) and (5,0). 2. For \( x + 3y = 9 \): When \( x = 0 \), \( y = 3 \) (point (0,3)), and when \( y = 0 \), \( x = 9 \) (point (9,0)). However, since \( x \geq 0 \) and \( y \geq 0 \), we will only consider the segment running to the right from (0,3). The feasible region is the area where all constraints overlap, which is bounded by the intersection points of the lines in the first quadrant. Identifying the vertices of the feasible region involves solving the pairs of equations: - Set \( x + y = 5 \) and \( x + 3y = 9 \): \[ x + y = 5 \] \[ x + 3(5 - x) = 9 \] Simplifying gives you \( 2x = 6 \) or \( x = 3 \), and substituting back gives \( y = 2 \). So, one vertex is (3,2). - The vertices of the feasible region formed by these constraints are (0,0), (0,3), (3,2), and (5,0). The graph would look like a polygon connecting these points, with the area below the lines shaded to represent the feasible region where all constraints are satisfied. To summarize, plot the lines, identify intersection points, and shade the area where all conditions meet, marking (0,0), (0,3), (3,2), and (5,0) as the vertices.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad