(2)Let \( S \subseteq \mathbb{R} \) and supphse that \( s^{*}=\sup S \) belongs to \( S \). If \( u \neq S \), show that \( \sup (S \cup\{u\})=\sup \left\{s^{*}, u\right\} \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To demonstrate that \( \sup (S \cup \{u\}) = \sup \{s^{*}, u\} \), we need to consider two cases based on the relation of \( u \) and \( s^{*} \). First, assume \( u \leq s^{*} \). In this case, the set \( S \cup \{u\} \) is essentially the same as \( S \) since \( s^{*} \) is already an upper bound for \( S \). Therefore, the supremum remains \( s^{*} \) because adding \( u \) (which is less than or equal to \( s^{*} \)) does not change the supremum. Hence, \( \sup(S \cup \{u\}) = s^{*} = \sup\{s^{*}, u\} \). Now, let's consider the case where \( u > s^{*} \). Here, \( u \) becomes the new upper bound. Thus, \( \sup(S \cup \{u\}) \) is determined by \( u \) since it exceeds all elements in \( S \). In this scenario, \( \sup(S \cup \{u\}) = u = \sup\{s^{*}, u\} \). Therefore, in both cases, we establish that \( \sup(S \cup \{u\}) = \sup\{s^{*}, u\} \), completing the proof.
preguntas relacionadas
