Let \( f(x)=\frac{\ln x}{x} \), determine whether a relative maximum or minimum there exists.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Bonus Knowledge
To analyze \( f(x) = \frac{\ln x}{x} \) for relative maxima or minima, we first need to find its critical points by calculating the derivative and setting it to zero. 1. Differentiate \( f(x) \): \[ f'(x) = \frac{1 \cdot x - \ln x \cdot 1}{x^2} = \frac{x - \ln x}{x^2} \] 2. Set the derivative equal to zero: \[ x - \ln x = 0 \quad \Rightarrow \quad x = \ln x \] This equation can be solved graphically or numerically and has a solution at \( x = e \). 3. To determine whether this critical point is a maximum or minimum, we can use the second derivative test: \[ f''(x) = \frac{(x^2)(1/x) - (x - \ln x)(2x)}{x^4} = \frac{x - \ln x - 2(x - \ln x)}{x^3} = \frac{-x + \ln x}{x^3} \] Evaluate \( f''(e) \): \[ f''(e) = \frac{-e + 1}{e^3} < 0 \] (since \( \ln e = 1 \)). Since \( f''(e) < 0 \), we find that \( x = e \) is a relative maximum. In summary, \( f(x) \) has a relative maximum at \( x = e \).
