Pregunta
upstudy study bank question image url

What total energy must be absorbed (from the environment) to change 1.00 kg of ice at \( -30.0^{\circ} \mathrm{C} \) on a lake surface in February to water at \( 20.0^{\circ} \mathrm{C} \) in August.

Ask by Salinas Ortega. in Canada
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The total energy required is 480,300 Joules.

Solución

To calculate the total energy required to change 1.00 kg of ice at \(-30.0^{\circ} \mathrm{C}\) to water at \(20.0^{\circ} \mathrm{C}\), we need to consider several steps in the process: 1. **Heating the ice from \(-30.0^{\circ} \mathrm{C}\) to \(0.0^{\circ} \mathrm{C}\)**. 2. **Melting the ice at \(0.0^{\circ} \mathrm{C}\) to water**. 3. **Heating the water from \(0.0^{\circ} \mathrm{C}\) to \(20.0^{\circ} \mathrm{C}\)**. ### Step 1: Heating the Ice The energy required to heat the ice can be calculated using the formula: \[ Q_1 = m \cdot c_{ice} \cdot \Delta T \] where: - \(m = 1.00 \, \text{kg}\) (mass of the ice), - \(c_{ice} = 2.09 \, \text{J/g} \cdot \text{°C} = 2090 \, \text{J/kg} \cdot \text{°C}\) (specific heat capacity of ice), - \(\Delta T = 0 - (-30) = 30 \, \text{°C}\) (temperature change). ### Step 2: Melting the Ice The energy required to melt the ice is given by: \[ Q_2 = m \cdot L_f \] where: - \(L_f = 334,000 \, \text{J/kg}\) (latent heat of fusion for ice). ### Step 3: Heating the Water The energy required to heat the water can be calculated using the formula: \[ Q_3 = m \cdot c_{water} \cdot \Delta T \] where: - \(c_{water} = 4.18 \, \text{J/g} \cdot \text{°C} = 4180 \, \text{J/kg} \cdot \text{°C}\) (specific heat capacity of water), - \(\Delta T = 20 - 0 = 20 \, \text{°C}\) (temperature change). ### Total Energy The total energy absorbed is the sum of the energies calculated in each step: \[ Q_{total} = Q_1 + Q_2 + Q_3 \] Now, let's calculate each of these values step by step. 1. Calculate \(Q_1\): \[ Q_1 = 1.00 \, \text{kg} \cdot 2090 \, \text{J/kg} \cdot \text{°C} \cdot 30 \, \text{°C} \] 2. Calculate \(Q_2\): \[ Q_2 = 1.00 \, \text{kg} \cdot 334,000 \, \text{J/kg} \] 3. Calculate \(Q_3\): \[ Q_3 = 1.00 \, \text{kg} \cdot 4180 \, \text{J/kg} \cdot \text{°C} \cdot 20 \, \text{°C} \] Now, I will perform these calculations. Calculate the value by following steps: - step0: Calculate: \(1\times 2090\times 30\) - step1: Rewrite the expression: \(2090\times 30\) - step2: Multiply the numbers: \(62700\) Calculate or simplify the expression \( 1.00 * 334000 \). Calculate the value by following steps: - step0: Calculate: \(1\times 334000\) - step1: Calculate: \(334000\) Calculate or simplify the expression \( 1.00 * 4180 * 20 \). Calculate the value by following steps: - step0: Calculate: \(1\times 4180\times 20\) - step1: Rewrite the expression: \(4180\times 20\) - step2: Multiply the numbers: \(83600\) Now that we have calculated the energy for each step: 1. **Heating the ice from \(-30.0^{\circ} \mathrm{C}\) to \(0.0^{\circ} \mathrm{C}\)**: \[ Q_1 = 62700 \, \text{J} \] 2. **Melting the ice at \(0.0^{\circ} \mathrm{C}\)**: \[ Q_2 = 334000 \, \text{J} \] 3. **Heating the water from \(0.0^{\circ} \mathrm{C}\) to \(20.0^{\circ} \mathrm{C}\)**: \[ Q_3 = 83600 \, \text{J} \] ### Total Energy Absorbed Now, we can find the total energy absorbed: \[ Q_{total} = Q_1 + Q_2 + Q_3 = 62700 \, \text{J} + 334000 \, \text{J} + 83600 \, \text{J} \] Let's calculate \(Q_{total}\). Calculate the value by following steps: - step0: Calculate: \(62700+334000+83600\) - step1: Add the numbers: \(480300\) The total energy that must be absorbed to change 1.00 kg of ice at \(-30.0^{\circ} \mathrm{C}\) to water at \(20.0^{\circ} \mathrm{C}\) is: \[ Q_{total} = 480300 \, \text{J} \] Thus, the total energy absorbed is **480,300 Joules**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the total energy absorbed to change 1.00 kg of ice at \(-30.0^{\circ} \mathrm{C}\) to water at \(20.0^{\circ} \mathrm{C}\), we need to consider several steps including the warming of the ice, the melting of the ice into water, and then the warming of the water to \(20.0^{\circ} \mathrm{C}\). 1. **Warming the ice from \(-30.0^{\circ}C\) to \(0.0^{\circ}C\)**: \(Q_1 = m \cdot c_{ice} \cdot \Delta T\) where \(m = 1.00\,kg\), \(c_{ice} = 2.09\, \text{J/g} \cdot \text{°C} = 2090\, \text{J/kg·°C}\), and \(\Delta T = 30.0^{\circ}C\). So, \(Q_1 = 1.00\,kg \cdot 2090\, \text{J/kg·°C} \cdot 30.0^{\circ}C = 62700\,J\). 2. **Melting the ice at \(0.0^{\circ}C\)**: \(Q_2 = m \cdot L_f\) where \(L_f = 334,000\, \text{J/kg}\). So, \(Q_2 = 1.00\,kg \cdot 334,000\, \text{J/kg} = 334000\,J\). 3. **Warming the water from \(0.0^{\circ}C\) to \(20.0^{\circ}C\)**: \(Q_3 = m \cdot c_{water} \cdot \Delta T\) where \(c_{water} = 4.18\, \text{J/g} \cdot \text{°C} = 4180\, \text{J/kg·°C}\). So, \(Q_3 = 1.00\,kg \cdot 4180\, \text{J/kg·°C} \cdot 20.0^{\circ}C = 83600\,J\). Now sum these quantities to find the total energy absorbed: \[ Q_{total} = Q_1 + Q_2 + Q_3 = 62700\,J + 334000\,J + 83600\,J = 490300\,J \] Therefore, the total energy absorbed to change 1.00 kg of ice at \(-30.0^{\circ}C\) to water at \(20.0^{\circ}C\) is \(490300\,J\).

Latest Chemistry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad