Choose all of the rational numbers. \( \frac{-5}{0} \) \( \frac{0}{0} \) \( 0.11 \overline{1} \) \( \frac{0}{-10} \) \( \sqrt{2} \) \( \frac{2}{-2} \) \( \sqrt{36} \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Let’s break this down! Rational numbers are numbers that can be expressed as the quotient of two integers (where the denominator is not zero). - \( \frac{-5}{0} \) and \( \frac{0}{0} \) are both not rational because division by zero is undefined. - \( 0.11 \overline{1} \) can be expressed as a fraction, making it rational. - \( \frac{0}{-10} \) equals \( 0 \), which is also rational (since \( 0 \) can be expressed as \( \frac{0}{1} \)). - \( \sqrt{2} \) is an irrational number because it cannot be expressed as a fraction of integers. - \( \frac{2}{-2} \) simplifies to \(-1\), which is rational. - \( \sqrt{36} = 6\), another rational number. So, the rational numbers from the list are: \( 0.11 \overline{1} \), \( 0 \) (from \( \frac{0}{-10} \)), \( -1 \) (from \( \frac{2}{-2} \)), and \( 6 \) (from \( \sqrt{36} \)).