Pregunta
1. Select the CORRECT statement about \( \sqrt[3]{-8} \). A. Real number B. Natural number C. Irrational number D. Complex number
Ask by Howell Paul. in Malaysia
Feb 04,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\( \sqrt[3]{-8} \) is a real number.
Solución
The expression \( \sqrt[3]{-8} \) represents the cube root of -8. Let's evaluate each option:
1. **Calculate \( \sqrt[3]{-8} \):**
\[
\sqrt[3]{-8} = -2 \quad \text{because} \quad (-2)^3 = -8
\]
2. **Evaluate Each Option:**
- **A. Real number**
- **True:** \(-2\) is a real number.
- **B. Natural number**
- **False:** Natural numbers are positive integers (1, 2, 3, ...). \(-2\) is negative.
- **C. Irrational number**
- **False:** \(-2\) is a rational number since it can be expressed as \(-2/1\).
- **D. Complex number**
- **Technically True:** In the broader sense, all real numbers are also complex numbers with an imaginary part of 0 (i.e., \(-2 = -2 + 0i\)). However, in the context of typical multiple-choice questions, "complex number" often implies a non-zero imaginary part, making this option less precise.
**Conclusion:**
The most accurate and specific correct statement is:
**A. Real number**
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Mind Expander
The correct statement about \( \sqrt[3]{-8} \) is A. Real number. Why? Because \(\sqrt[3]{-8} = -2\), which is indeed a real number—unlike the square root of a negative number, which is not defined within the real numbers. While the cube root of a negative number is real, it's important to remember that negative numbers have special properties! For example, any odd root of a negative number will also yield a negative value. So, \(-2\) is a real number and serves as a crucial distinction in understanding the different types of roots!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium