\( \lim _{\theta \rightarrow 0}(f(\theta) \cdot \ln \theta)=j \) when \( f(\theta)=4 \sin (\theta)(\cos (\theta)+1) \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To analyze the limit \( \lim _{\theta \rightarrow 0}(f(\theta) \cdot \ln \theta) \) where \( f(\theta)=4 \sin (\theta)(\cos (\theta)+1) \), we start by substituting the expression for \( f(\theta) \): \[ \lim_{\theta \to 0} \left( 4 \sin(\theta)(\cos(\theta)+1) \cdot \ln \theta \right) \] As \( \theta \to 0 \), both \( \sin(\theta) \) and \( \cos(\theta) \) approach 0 and 1, respectively. So, we evaluate: 1. \( \sin(\theta) \approx \theta \) (using the small-angle approximation). 2. \( \cos(\theta) + 1 \approx 1 + 1 = 2 \) (as \( \cos(0) = 1 \)). Thus, \[ f(\theta) \approx 4 \cdot \theta \cdot 2 = 8\theta \] Now our limit transforms to: \[ \lim_{\theta \to 0} (8\theta \cdot \ln \theta) \] Knowing that \( \ln(\theta) \to -\infty \) as \( \theta \to 0 \), we analyze the product \( \theta \cdot \ln \theta \): \[ \lim_{\theta \to 0} \theta \cdot \ln \theta = 0 \] This is a very common limit that can be resolved by recognizing the faster decay of \( \theta \) compared to the growth of \( \ln(\theta) \). Thus, we find: \[ 8 \cdot 0 = 0. \] Therefore, the final limit is: \[ \lim _{\theta \rightarrow 0}(f(\theta) \cdot \ln \theta) = 0. \]
