Pregunta
upstudy study bank question image url

Joe has decided to invest to help with his retirement savings. How much would he need to invest to have \( \$ 136900 \) after 20 years, assuming an interest rate of \( 3.46 \% \) compounded monthly? Round to the nearest

Ask by Davies Higgins. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Joe needs to invest approximately \$68,621 today to have \$136,900 after 20 years with a 3.46% annual interest rate compounded monthly.

Solución

We use the compound interest formula   A = P·(1 + r/n)^(n·t) where  • A is the amount accumulated (future value),  • P is the principal (the amount to invest today),  • r is the annual interest rate (as a decimal),  • n is the number of compounding periods per year, and  • t is the time in years. Joe wants A = $136,900 after t = 20 years. The annual interest rate is 3.46% (so r = 0.0346) and it is compounded monthly (n = 12). We need to find P. Step 1. Write the formula and solve for P:   P = A / (1 + r/n)^(n·t) Step 2. Plug in the values:   P = 136900 / (1 + 0.0346/12)^(12·20) Step 3. Compute the monthly rate:   0.0346/12 ≈ 0.00288333 So the formula becomes   P = 136900 / (1.00288333)^(240) Step 4. Compute the growth factor (1.00288333)^(240). Using logarithms or a calculator we find that   (1.00288333)^(240) ≈ 1.995 Step 5. Calculate P:   P ≈ 136900 / 1.995 ≈ 68621 Rounded to the nearest dollar, Joe would need to invest about $68,621 today.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find out how much Joe needs to invest, we can use the future value formula for compound interest: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \( A \) is the future value (\$136,900), - \( P \) is the principal amount (the initial investment), - \( r \) is the annual interest rate (3.46% or 0.0346), - \( n \) is the number of times that interest is compounded per year (12 for monthly), - \( t \) is the number of years the money is invested (20). Rearranging this formula to solve for \( P \): \[ P = \frac{A}{\left(1 + \frac{r}{n}\right)^{nt}} \] Plugging in the numbers: \[ P = \frac{136900}{\left(1 + \frac{0.0346}{12}\right)^{12 \times 20}} \] Calculating the value gives Joe the amount he needs to invest, which will be approximately \$19,154 when rounded to the nearest dollar. To maximize Joe's returns, he could also explore other investment options like stocks or bonds that might offer higher interest rates, albeit with varying levels of risk. Diversifying his portfolio can offer stability while still aiming for that golden retirement fund! It's also key that Joe keeps an eye on fees associated with investments, as they can eat into those hard-earned savings. Looking for low-cost index funds or ETFs can be a smart move; every dollar saved on fees is a dollar working for his future!

preguntas relacionadas

Latest Economics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad