Pregunta
upstudy study bank question image url

6. ( 10 points) A student started to compute the correlation between variables \( x \) and \( y \). The work completed by the student is shown below. \[ \begin{array}{|c|c|} \hline z_{x} & z_{y} \\ \hline-1.8 & 0.5 \\ \hline-0.7 & -0.1 \\ \hline 0.1 & 0.6 \\ =0.07 \\ \hline 1.8 & -0.5 \\ \hline 2.2 & -0.1 \\ =0.06 \\ & =0.22 \\ & =0.9 \\ \text { sum }=-2.6 \end{array} \] a. Complete the computation of the correlation coefficient between variables. (4 decimal places.) \[ r=\frac{1}{5-1}(-1.45)=0.25(-1.45)=50.3625 \] b. Based on the correlation coefficient, classify the strength and the direction of the linear relationship. Strength \( = \) Weak Direction \( = \) negasi ve c. What percentage of the variation in \( y \) is explained by a linear relationship between \( x \) and \( y \) ? ( 4 significant figures.)

Ask by Schofield Page. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Part a**: The correlation coefficient \( r \) is -0.4725. - **Part b**: The relationship is weak and negative. - **Part c**: 22.36% of the variation in \( y \) is explained by the linear relationship between \( x \) and \( y \).

Solución

To solve the problem, we will follow the steps outlined in the prompt. ### Part a: Compute the Correlation Coefficient The correlation coefficient \( r \) is calculated using the formula: \[ r = \frac{1}{n-1} \sum (z_x \cdot z_y) \] where \( n \) is the number of pairs of data points, \( z_x \) and \( z_y \) are the standardized values of \( x \) and \( y \). From the table, we can see the values of \( z_x \) and \( z_y \): \[ \begin{array}{|c|c|} \hline z_{x} & z_{y} \\ \hline -1.8 & 0.5 \\ \hline -0.7 & -0.1 \\ \hline 0.1 & 0.6 \\ \hline 1.8 & -0.5 \\ \hline 2.2 & -0.1 \\ \hline \end{array} \] Now, we will calculate the products \( z_x \cdot z_y \): 1. \( -1.8 \cdot 0.5 = -0.9 \) 2. \( -0.7 \cdot -0.1 = 0.07 \) 3. \( 0.1 \cdot 0.6 = 0.06 \) 4. \( 1.8 \cdot -0.5 = -0.9 \) 5. \( 2.2 \cdot -0.1 = -0.22 \) Now, we sum these products: \[ \text{Sum} = -0.9 + 0.07 + 0.06 - 0.9 - 0.22 = -1.89 \] Now, we can calculate \( r \): \[ r = \frac{1}{5-1} \cdot (-1.89) = \frac{-1.89}{4} = -0.4725 \] ### Part b: Classify the Strength and Direction of the Linear Relationship The correlation coefficient \( r = -0.4725 \) indicates: - **Strength**: Weak (since \( |r| < 0.5 \)) - **Direction**: Negative (since \( r < 0 \)) ### Part c: Percentage of Variation Explained The percentage of variation in \( y \) explained by the linear relationship between \( x \) and \( y \) is given by \( r^2 \): \[ r^2 = (-0.4725)^2 = 0.2236 \] To express this as a percentage: \[ \text{Percentage} = r^2 \times 100 = 0.2236 \times 100 = 22.36\% \] ### Final Answers - **Part a**: \( r = -0.4725 \) - **Part b**: Strength = Weak, Direction = Negative - **Part c**: 22.36%

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To compute the correlation coefficient correctly, we start by recognizing that the provided sums of products appear to be incorrect. The general formula for the correlation coefficient \( r \) is: \[ r = \frac{1}{n-1} \sum_{i=1}^n z_{x_i} z_{y_i} \] Here you would typically sum the products of the paired z-scores from both columns, and it seems like the computed sum of products does not reflect the actual calculations from the given z-scores. Assuming \( n = 5 \) based on the entries, let’s clarify: 1. Compute \( \sum z_{x} z_{y} \): \[ (-1.8)(0.5) + (-0.7)(-0.1) + (0.1)(0.6) + (1.8)(-0.5) + (2.2)(-0.1) = -0.9 + 0.07 + 0.06 - 0.9 - 0.22 = -1.89 \] 2. Then, applying it to the correlation formula: \[ r = \frac{1}{5-1} \sum z_{x} z_{y} = \frac{-1.89}{4} = -0.4725 \] Thus, the correlation coefficient \( r \) should be \( -0.4725\). Next, for classification based on the updated correlation coefficient: **Strength = Moderate** (as it lies between -0.5 to -0.8) **Direction = Negative** (as the correlation value is negative). Lastly, to find the percentage of the variation in \( y \) explained by \( x \), compute \( r^2 \): \[ r^2 = (-0.4725)^2 = 0.2237 \] Multiply by 100 to walk it on over to percentage town: \[ \text{Percentage explained} = 22.37\% \] So, the final answers are: 1. Correlation coefficient \( r = -0.4725 \) 2. Strength and direction: **Moderate Negative** 3. Percentage of variation explained: **22.37%**

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad