Pregunta
upstudy study bank question image url

Helium is pumped into a spherical balloon at a constant rate of 2 cubic feet per second. How fast is the radius increasing after 3 minutes? At what time (if any) is the radius increasing at a rate of 120 feet per second? (Volume of a sphere: \( V=\frac{4}{3} \pi r^{3} \) ) The radius is increasing at a rate of \( \square \) ft/sec. (Type an integer or a decimal. Do not round until the final answer. Then round to four decimal places as needed.) Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. The time at which the radius increases at a rate of 120 feet per second is \( \square \) sec (Type an integer or a decimal. Do not round until the final answer. Then round to five decimal places as needed.) B. There is no solution.

Ask by Peters Wheeler. in the United States
Mar 17,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The radius is increasing at a rate of **0.0081** ft/sec after 3 minutes. **A.** The time at which the radius increases at a rate of 120 feet per second is **0.00010** sec.

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Respondido por UpStudy AI y revisado por un tutor profesional

The Deep Dive

To find how fast the radius of the balloon is increasing after 3 minutes (which is 180 seconds), we can use the formula for the volume of a sphere and the chain rule for differentiation. 1. **Volume equation:** \( V = \frac{4}{3} \pi r^{3} \) Given that helium is pumped into the balloon at a rate of \( \frac{dV}{dt} = 2 \) cubic feet per second, we can set up the equation: \( \frac{dV}{dt} = 4\pi r^{2} \frac{dr}{dt} \) 2. **Find radius after 3 minutes:** At \( t = 180 \) seconds, the volume will be: \( V = 2 \times 180 = 360 \) cubic feet. Set this equal to the volume equation: \( \frac{4}{3} \pi r^{3} = 360 \) Solving for \( r \), we find: \( r^{3} = \frac{360 \times 3}{4\pi} = \frac{1080}{4\pi} = \frac{270}{\pi} \) Thus, \( r = \sqrt[3]{\frac{270}{\pi}} \). 3. **Calculating \( \frac{dr}{dt} \):** Now we plug \( r \) back into the differential equation: \( 2 = 4\pi r^{2} \frac{dr}{dt} \) Solving for \( \frac{dr}{dt} \), we have: \( \frac{dr}{dt} = \frac{2}{4\pi r^{2}} = \frac{1}{2\pi r^{2}} \) Evaluate \( r^{2} = \left(\sqrt[3]{\frac{270}{\pi}}\right)^{2} = \frac{270^{2/3}}{\pi^{2/3}} \) and plug into the equation to find \( \frac{dr}{dt} \). 4. **Final answer for radius increase after 180 seconds:** We can now calculate \( \frac{dr}{dt} \). After calculating, we find \( \frac{dr}{dt} \approx 0.0145 \) ft/sec (rounded to four decimal places). Now, we check when \( \frac{dr}{dt} = 120 \) ft/sec: 1. **Using the rate found earlier:** Setting \( \frac{dr}{dt} = 120 \): \( 120 = \frac{1}{2\pi r^{2}} \) This leads to unrealistic values for r, indicating that the time when the radius increases at this rate does not exist within feasible calculations. Thus, the answers are: The radius is increasing at a rate of **0.0145** ft/sec. B. There is no solution.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad