Investing \( \$ 12,000 \) in a savings acce much money after 5 years? Use the formula: \( A=P\left(1+\frac{r}{m}\right)^{\text {md }} \) \( \$ 13,255.47 \) \( \$ 13,200.00 \) \( \$ 12,865.62 \) \( \$ 13,248.97 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To figure out how much money you would have after 5 years, you need the interest rate (r) and the number of times the interest is compounded per year (m). Assuming a common scenario where it’s compounded annually (m=1), you just plug in the numbers into the formula: \( A = 12000(1 + \frac{r}{1})^{1 \cdot 5} \). If you give me the interest rate, we can calculate the exact amount! It's easy to overlook the importance of choosing the right interest rate and compounding frequency in this formula. If we incorrectly assume a different interest rate or compounding period, it could lead us astray! Always double-check these values before jumping to conclusions about your future savings!
