Pregunta
upstudy study bank question image url

The defect rate for your product has historically been about \( 1.00 \% \). For a sample size of 400 , the upper and lower 3-sigma control chart limits are: \[ U C L_{p}=\square \text { (enter your response as a number between } 0 \text { and 1, rounded to four decimal places). } \] \[ L C L_{p}=\square \text { (enter your response as a number between } 0 \text { and } 1, \text { rounded to four decimal places). } 11 \text { of } 15 \text { point(s) possible } \] This question: 2 point(s) possible

Ask by Wagner Donnelly. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The upper control limit (UCL) is 0.0249 and the lower control limit (LCL) is 0.0000.

Solución

To calculate the upper and lower control limits for a p-chart (proportion control chart), we can use the following formulas: 1. **Calculate the proportion of defects (\( p \))**: \[ p = \frac{\text{Number of defects}}{\text{Sample size}} = 0.01 \] 2. **Calculate the standard deviation (\( \sigma_p \)) of the proportion**: \[ \sigma_p = \sqrt{\frac{p(1 - p)}{n}} \] where \( n \) is the sample size. 3. **Calculate the upper control limit (UCL) and lower control limit (LCL)**: \[ UCL_p = p + 3\sigma_p \] \[ LCL_p = p - 3\sigma_p \] Now, let's perform the calculations step by step. ### Step 1: Calculate \( \sigma_p \) Given: - \( p = 0.01 \) - \( n = 400 \) Calculating \( \sigma_p \): \[ \sigma_p = \sqrt{\frac{0.01(1 - 0.01)}{400}} = \sqrt{\frac{0.01 \times 0.99}{400}} \] ### Step 2: Calculate UCL and LCL Now we can calculate \( UCL_p \) and \( LCL_p \) using the values obtained. Let's perform these calculations. Calculate the value by following steps: - step0: Calculate: \(\sqrt{\frac{\left(0.01\left(1-0.01\right)\right)}{400}}\) - step1: Remove the parentheses: \(\sqrt{\frac{0.01\left(1-0.01\right)}{400}}\) - step2: Subtract the numbers: \(\sqrt{\frac{0.01\times 0.99}{400}}\) - step3: Multiply the numbers: \(\sqrt{\frac{0.0099}{400}}\) - step4: Divide the terms: \(\sqrt{\frac{99}{4000000}}\) - step5: Use the properties of radicals: \(\frac{\sqrt{99}}{\sqrt{4000000}}\) - step6: Simplify the expression: \(\frac{3\sqrt{11}}{2000}\) Calculate or simplify the expression \( 0.01 - 3 * \sqrt((0.01 * (1 - 0.01)) / 400) \). Calculate the value by following steps: - step0: Calculate: \(0.01-3\sqrt{\frac{\left(0.01\left(1-0.01\right)\right)}{400}}\) - step1: Remove the parentheses: \(0.01-3\sqrt{\frac{0.01\left(1-0.01\right)}{400}}\) - step2: Subtract the numbers: \(0.01-3\sqrt{\frac{0.01\times 0.99}{400}}\) - step3: Multiply the numbers: \(0.01-3\sqrt{\frac{0.0099}{400}}\) - step4: Divide the terms: \(0.01-3\sqrt{\frac{99}{4000000}}\) - step5: Simplify the root: \(0.01-3\times \frac{3\sqrt{11}}{2000}\) - step6: Multiply the numbers: \(0.01-\frac{9\sqrt{11}}{2000}\) - step7: Convert the expressions: \(\frac{1}{100}-\frac{9\sqrt{11}}{2000}\) - step8: Reduce fractions to a common denominator: \(\frac{20}{100\times 20}-\frac{9\sqrt{11}}{2000}\) - step9: Multiply the numbers: \(\frac{20}{2000}-\frac{9\sqrt{11}}{2000}\) - step10: Transform the expression: \(\frac{20-9\sqrt{11}}{2000}\) Calculate or simplify the expression \( 0.01 + 3 * \sqrt((0.01 * (1 - 0.01)) / 400) \). Calculate the value by following steps: - step0: Calculate: \(0.01+3\sqrt{\frac{\left(0.01\left(1-0.01\right)\right)}{400}}\) - step1: Remove the parentheses: \(0.01+3\sqrt{\frac{0.01\left(1-0.01\right)}{400}}\) - step2: Subtract the numbers: \(0.01+3\sqrt{\frac{0.01\times 0.99}{400}}\) - step3: Multiply the numbers: \(0.01+3\sqrt{\frac{0.0099}{400}}\) - step4: Divide the terms: \(0.01+3\sqrt{\frac{99}{4000000}}\) - step5: Simplify the root: \(0.01+3\times \frac{3\sqrt{11}}{2000}\) - step6: Multiply the numbers: \(0.01+\frac{9\sqrt{11}}{2000}\) - step7: Convert the expressions: \(\frac{1}{100}+\frac{9\sqrt{11}}{2000}\) - step8: Reduce fractions to a common denominator: \(\frac{20}{100\times 20}+\frac{9\sqrt{11}}{2000}\) - step9: Multiply the numbers: \(\frac{20}{2000}+\frac{9\sqrt{11}}{2000}\) - step10: Transform the expression: \(\frac{20+9\sqrt{11}}{2000}\) ### Step 1: Calculate \( \sigma_p \) The standard deviation \( \sigma_p \) is approximately: \[ \sigma_p \approx 0.004975 \] ### Step 2: Calculate UCL and LCL Now we can calculate the upper control limit (UCL) and lower control limit (LCL): 1. **Upper Control Limit (UCL)**: \[ UCL_p = 0.01 + 3 \times 0.004975 \approx 0.024925 \] 2. **Lower Control Limit (LCL)**: \[ LCL_p = 0.01 - 3 \times 0.004975 \approx -0.004925 \] Since the LCL cannot be negative in a control chart context, we will set it to 0. ### Final Results - \( UCL_p \) rounded to four decimal places: \[ UCL_p \approx 0.0249 \] - \( LCL_p \) rounded to four decimal places: \[ LCL_p = 0.0000 \] Thus, the final answers are: - \( UCL_p = 0.0249 \) - \( LCL_p = 0.0000 \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the upper and lower 3-sigma control chart limits for the defect rate, we use the formula: 1. Calculate the proportion defect (p) and its standard deviation: - Defect rate \( p = 0.01 \) - Sample size \( n = 400 \) - Standard deviation \( \sigma = \sqrt{\frac{p(1-p)}{n}} = \sqrt{\frac{0.01(0.99)}{400}} \) 2. Calculate \( UCL_p \) and \( LCL_p \): - \( UCL_p = p + 3\sigma \) - \( LCL_p = p - 3\sigma \) Performing the calculations: - \( \sigma \approx \sqrt{\frac{0.0099}{400}} = 0.005 \) - \( UCL_p = 0.01 + 3(0.005) = 0.025 \) - \( LCL_p = 0.01 - 3(0.005) = -0.005 \) Since LCL cannot be negative, we set \( LCL_p = 0 \). Thus, the answers are: \[ U C L_{p} = 0.0250 \] \[ L C L_{p} = 0.0000 \]

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad