Responder
The upper control limit (UCL) is 0.0249 and the lower control limit (LCL) is 0.0000.
Solución
To calculate the upper and lower control limits for a p-chart (proportion control chart), we can use the following formulas:
1. **Calculate the proportion of defects (\( p \))**:
\[
p = \frac{\text{Number of defects}}{\text{Sample size}} = 0.01
\]
2. **Calculate the standard deviation (\( \sigma_p \)) of the proportion**:
\[
\sigma_p = \sqrt{\frac{p(1 - p)}{n}}
\]
where \( n \) is the sample size.
3. **Calculate the upper control limit (UCL) and lower control limit (LCL)**:
\[
UCL_p = p + 3\sigma_p
\]
\[
LCL_p = p - 3\sigma_p
\]
Now, let's perform the calculations step by step.
### Step 1: Calculate \( \sigma_p \)
Given:
- \( p = 0.01 \)
- \( n = 400 \)
Calculating \( \sigma_p \):
\[
\sigma_p = \sqrt{\frac{0.01(1 - 0.01)}{400}} = \sqrt{\frac{0.01 \times 0.99}{400}}
\]
### Step 2: Calculate UCL and LCL
Now we can calculate \( UCL_p \) and \( LCL_p \) using the values obtained.
Let's perform these calculations.
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\frac{\left(0.01\left(1-0.01\right)\right)}{400}}\)
- step1: Remove the parentheses:
\(\sqrt{\frac{0.01\left(1-0.01\right)}{400}}\)
- step2: Subtract the numbers:
\(\sqrt{\frac{0.01\times 0.99}{400}}\)
- step3: Multiply the numbers:
\(\sqrt{\frac{0.0099}{400}}\)
- step4: Divide the terms:
\(\sqrt{\frac{99}{4000000}}\)
- step5: Use the properties of radicals:
\(\frac{\sqrt{99}}{\sqrt{4000000}}\)
- step6: Simplify the expression:
\(\frac{3\sqrt{11}}{2000}\)
Calculate or simplify the expression \( 0.01 - 3 * \sqrt((0.01 * (1 - 0.01)) / 400) \).
Calculate the value by following steps:
- step0: Calculate:
\(0.01-3\sqrt{\frac{\left(0.01\left(1-0.01\right)\right)}{400}}\)
- step1: Remove the parentheses:
\(0.01-3\sqrt{\frac{0.01\left(1-0.01\right)}{400}}\)
- step2: Subtract the numbers:
\(0.01-3\sqrt{\frac{0.01\times 0.99}{400}}\)
- step3: Multiply the numbers:
\(0.01-3\sqrt{\frac{0.0099}{400}}\)
- step4: Divide the terms:
\(0.01-3\sqrt{\frac{99}{4000000}}\)
- step5: Simplify the root:
\(0.01-3\times \frac{3\sqrt{11}}{2000}\)
- step6: Multiply the numbers:
\(0.01-\frac{9\sqrt{11}}{2000}\)
- step7: Convert the expressions:
\(\frac{1}{100}-\frac{9\sqrt{11}}{2000}\)
- step8: Reduce fractions to a common denominator:
\(\frac{20}{100\times 20}-\frac{9\sqrt{11}}{2000}\)
- step9: Multiply the numbers:
\(\frac{20}{2000}-\frac{9\sqrt{11}}{2000}\)
- step10: Transform the expression:
\(\frac{20-9\sqrt{11}}{2000}\)
Calculate or simplify the expression \( 0.01 + 3 * \sqrt((0.01 * (1 - 0.01)) / 400) \).
Calculate the value by following steps:
- step0: Calculate:
\(0.01+3\sqrt{\frac{\left(0.01\left(1-0.01\right)\right)}{400}}\)
- step1: Remove the parentheses:
\(0.01+3\sqrt{\frac{0.01\left(1-0.01\right)}{400}}\)
- step2: Subtract the numbers:
\(0.01+3\sqrt{\frac{0.01\times 0.99}{400}}\)
- step3: Multiply the numbers:
\(0.01+3\sqrt{\frac{0.0099}{400}}\)
- step4: Divide the terms:
\(0.01+3\sqrt{\frac{99}{4000000}}\)
- step5: Simplify the root:
\(0.01+3\times \frac{3\sqrt{11}}{2000}\)
- step6: Multiply the numbers:
\(0.01+\frac{9\sqrt{11}}{2000}\)
- step7: Convert the expressions:
\(\frac{1}{100}+\frac{9\sqrt{11}}{2000}\)
- step8: Reduce fractions to a common denominator:
\(\frac{20}{100\times 20}+\frac{9\sqrt{11}}{2000}\)
- step9: Multiply the numbers:
\(\frac{20}{2000}+\frac{9\sqrt{11}}{2000}\)
- step10: Transform the expression:
\(\frac{20+9\sqrt{11}}{2000}\)
### Step 1: Calculate \( \sigma_p \)
The standard deviation \( \sigma_p \) is approximately:
\[
\sigma_p \approx 0.004975
\]
### Step 2: Calculate UCL and LCL
Now we can calculate the upper control limit (UCL) and lower control limit (LCL):
1. **Upper Control Limit (UCL)**:
\[
UCL_p = 0.01 + 3 \times 0.004975 \approx 0.024925
\]
2. **Lower Control Limit (LCL)**:
\[
LCL_p = 0.01 - 3 \times 0.004975 \approx -0.004925
\]
Since the LCL cannot be negative in a control chart context, we will set it to 0.
### Final Results
- \( UCL_p \) rounded to four decimal places:
\[
UCL_p \approx 0.0249
\]
- \( LCL_p \) rounded to four decimal places:
\[
LCL_p = 0.0000
\]
Thus, the final answers are:
- \( UCL_p = 0.0249 \)
- \( LCL_p = 0.0000 \)
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución