Pregunta
upstudy study bank question image url

When a child is born, her grandfather decides to put \( \$ 100 \) in an account that earns interest. He plans to make no other deposits or withdrawals for 18 years. When the child turns 18 years old, the money in the account will be a birthday gift. The grandfather is choosing between two options: Option 1: An account that grows by \( 10.5 \% \) each year. Option 2 : An account that grows by \( \$ 20 \) each year. a) Using Option 1, how much will be in the account after 18 years? b) Using Option 2 , how much will be in the account after 18 years? Which option will result in a better 18 th birthday gift? Explain your c) Ueasoning.

Ask by Welch Horton. in the United States
Feb 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 18 years: - **Option 1**: \$603.28 - **Option 2**: \$460 **Option 1** is better for the 18th birthday gift because it grows more over time.

Solución

To solve this problem, we will calculate the amount in the account after 18 years for both options and then compare the results. ### a) Option 1: Account that grows by \( 10.5\% \) each year The formula for compound interest is given by: \[ A = P(1 + r)^t \] Where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money). - \( r \) is the annual interest rate (decimal). - \( t \) is the time the money is invested for in years. For Option 1: - \( P = 100 \) - \( r = 0.105 \) - \( t = 18 \) Now, we can calculate the amount in the account after 18 years. ### b) Option 2: Account that grows by \( \$ 20 \) each year For Option 2, the amount in the account after 18 years can be calculated using a simple linear growth formula: \[ A = P + (d \times t) \] Where: - \( A \) is the total amount after \( t \) years. - \( P \) is the principal amount. - \( d \) is the amount added each year. - \( t \) is the number of years. For Option 2: - \( P = 100 \) - \( d = 20 \) - \( t = 18 \) Now, we can calculate the amount in the account after 18 years for both options. Let's perform the calculations. Calculate the value by following steps: - step0: Calculate: \(100+\left(20\times 18\right)\) - step1: Multiply the numbers: \(100+360\) - step2: Add the numbers: \(460\) Calculate or simplify the expression \( 100*(1 + 0.105)^18 \). Calculate the value by following steps: - step0: Calculate: \(100\left(1+0.105\right)^{18}\) - step1: Add the numbers: \(100\times 1.105^{18}\) - step2: Convert the expressions: \(100\left(\frac{221}{200}\right)^{18}\) - step3: Simplify: \(100\times \frac{221^{18}}{200^{18}}\) - step4: Rewrite the expression: \(100\times \frac{221^{18}}{100^{18}\times 2^{18}}\) - step5: Reduce the numbers: \(1\times \frac{221^{18}}{100^{17}\times 2^{18}}\) - step6: Multiply the fractions: \(\frac{221^{18}}{100^{17}\times 2^{18}}\) ### a) Option 1: Amount after 18 years Using the compound interest formula, we calculated: \[ A = 100(1 + 0.105)^{18} \approx 603.28 \] So, after 18 years, the amount in the account for Option 1 will be approximately **\$603.28**. ### b) Option 2: Amount after 18 years Using the linear growth formula, we calculated: \[ A = 100 + (20 \times 18) = 100 + 360 = 460 \] So, after 18 years, the amount in the account for Option 2 will be **\$460**. ### c) Comparison and Reasoning Now, let's compare the two options: - **Option 1**: \$603.28 - **Option 2**: \$460 **Conclusion**: Option 1 results in a better 18th birthday gift, as it provides approximately \$603.28 compared to \$460 from Option 2. The higher growth rate of 10.5% compounded annually significantly increases the total amount over 18 years compared to the fixed annual addition of \$20 in Option 2.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the amount in the account for each option, we can use the formulas for compound interest and simple interest. a) For Option 1, where the account grows by \( 10.5\% \) each year, we use the formula for compound interest: \[ A = P(1 + r)^t \] Where \( A \) is the amount after \( t \) years, \( P = 100 \) (initial deposit), \( r = 0.105 \) (interest rate), and \( t = 18 \). \[ A = 100(1 + 0.105)^{18} \approx 100(5.476) \approx 547.60 \] So, the amount will be approximately \( \$547.60 \) after 18 years. b) For Option 2, where the account grows by \( \$20 \) each year, the total amount after 18 years can be calculated simply by adding \( \$20 \) for each of the 18 years: \[ A = P + (20 \times t) = 100 + (20 \times 18) = 100 + 360 = 460 \] Thus, the amount in the account will be \( \$460 \) after 18 years. c) Comparing both options, Option 1 yields \( \$547.60 \) while Option 2 yields \( \$460 \). Clearly, Option 1 results in a better 18th birthday gift. The power of compound interest is what makes the first option shine brighter; the money grows exponentially over time, while the second option simply adds a constant amount each year. It’s a fantastic lesson in the importance of understanding how interest works!

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad