Pregunta
upstudy study bank question image url

Question
Solve the following inequality below for all values on the interval . Use interval notation to represent the solution set in the answer space
below.

Ask by Burton Sullivan. in the United States
Mar 27,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution is in the interval .

Solución

We start with the inequality
Let so that the inequality becomes
  1. Solve the corresponding quadratic equation:
    Using the quadratic formula, where , , and :
    Thus, the solutions are
  2. Factor the quadratic:
    Since , the inequality is equivalent to
  3. Determine the intervals for which the product is positive:
    • The product is positive when both factors are positive: However, since , there are no solutions in this case.
    • The product is also positive when both factors are negative: This simplifies to
  4. Translate back to :
    We require
    On the interval , at and . The cosine function is less than when
Thus, the solution in interval notation is

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the inequality , we can start by setting . This transforms the inequality into a standard quadratic form:
Next, we can factor the quadratic equation. It factors into:
To solve the inequality, we find the critical points:
  1. gives .
  2. gives .
Now, we can test the intervals defined by the critical points: , , and .
  • For , let’s choose : .
  • For , let’s choose : .
  • For , let’s choose : .
The solution set for is:
Translating back to :
  1. For : occurs in the intervals .
  2. For : Since cosine cannot exceed 1, this does not provide any valid solutions.
Thus, the solution set for the inequality in the interval is:

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad