Pregunta
upstudy study bank question image url

1. Let \( f \) be a function that is everywhere differentiable and that has the following properties. (i) \( f(x+h)=\frac{f(x)+f(h)}{f(-x)+f(-h)} \) for all real numbers \( h \) and \( x \). (ii) \( f(x)>0 \) for all real numbers \( x \). (iii) \( f^{\prime}(0)=-1 \). (a) Find the value of \( f(0) \). (b) Show that \( f(-x)=\frac{1}{f(x)} \) for all real numbers \( x \). (c) Using part (b), show that \( f(x+h)=f(x) f(h) \) for all real numbers \( h \) and \( x \). (d) Use the definition of the derivative to find \( f(x) \) in terms of \( f(x) \).

Ask by Bryant Cruz. in the United Arab Emirates
Mar 16,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( f(x) = e^{-x} \)

Solución

To solve the problem step by step, we will analyze each part carefully. ### Part (a): Find the value of \( f(0) \). We start with the functional equation given in part (i): \[ f(x+h) = \frac{f(x) + f(h)}{f(-x) + f(-h)} \] Let's substitute \( x = 0 \) into this equation: \[ f(0+h) = f(h) = \frac{f(0) + f(h)}{f(0) + f(-h)} \] This simplifies to: \[ f(h) (f(0) + f(-h)) = f(0) + f(h) \] Rearranging gives: \[ f(h) f(0) + f(h) f(-h) = f(0) + f(h) \] Now, we can isolate terms involving \( f(h) \): \[ f(h) f(0) + f(h) f(-h) - f(h) = f(0) \] Factoring out \( f(h) \): \[ f(h) (f(0) + f(-h) - 1) = f(0) \] Since \( f(h) > 0 \) for all \( h \), we can divide both sides by \( f(h) \): \[ f(0) + f(-h) - 1 = \frac{f(0)}{f(h)} \] Now, let’s evaluate this at \( h = 0 \): \[ f(0) + f(0) - 1 = \frac{f(0)}{f(0)} \] This simplifies to: \[ 2f(0) - 1 = 1 \] Thus, we have: \[ 2f(0) = 2 \implies f(0) = 1 \] ### Part (b): Show that \( f(-x) = \frac{1}{f(x)} \) for all real numbers \( x \). Using the functional equation again, we substitute \( h = 0 \): \[ f(x + 0) = f(x) = \frac{f(x) + f(0)}{f(-x) + f(0)} \] Substituting \( f(0) = 1 \): \[ f(x) = \frac{f(x) + 1}{f(-x) + 1} \] Cross-multiplying gives: \[ f(x)(f(-x) + 1) = f(x) + 1 \] Expanding and rearranging: \[ f(x) f(-x) + f(x) = f(x) + 1 \] This simplifies to: \[ f(x) f(-x) = 1 \] Thus, we conclude: \[ f(-x) = \frac{1}{f(x)} \] ### Part (c): Show that \( f(x+h) = f(x) f(h) \) for all real numbers \( h \) and \( x \). Using the result from part (b): \[ f(x+h) = \frac{f(x) + f(h)}{f(-x) + f(-h)} \] Substituting \( f(-x) = \frac{1}{f(x)} \) and \( f(-h) = \frac{1}{f(h)} \): \[ f(x+h) = \frac{f(x) + f(h)}{\frac{1}{f(x)} + \frac{1}{f(h)}} \] This simplifies to: \[ f(x+h) = \frac{f(x) + f(h)}{\frac{f(h) + f(x)}{f(x) f(h)}} \] Thus: \[ f(x+h) = f(x) f(h) \] ### Part (d): Use the definition of the derivative to find \( f(x) \) in terms of \( f(x) \). We know that \( f(x+h) = f(x) f(h) \). Taking the derivative with respect to \( x \): \[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = \lim_{h \to 0} \frac{f(x) f(h) - f(x)}{h} \] Factoring out \( f(x) \): \[ f'(x) = f(x) \lim_{h \to 0} \frac{f(h) - 1}{h} \] Let \( L = \lim_{h \to 0} \frac{f(h) - 1}{h} \). We know from part (iii) that \( f'(0) = -1 \), so: \[ L = f'(0) = -1 \] Thus: \[ f'(x) = -f(x) \] This is a first-order linear differential equation. The general solution is: \[ f(x) = Ce^{-x} \] Using the condition \( f(0) = 1 \): \[ f(0) = C \cdot e^0 = C = 1 \] Thus, we have: \[ f(x) = e^{-x} \] ### Summary of Results: - (a) \( f(0) = 1 \) - (b) \( f(-x) = \frac{1}{f(x)} \) - (c) \( f(x+h) = f(x) f(h) \) - (d) \( f(x) = e^{-x} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the problem step by step: ### (a) Find the value of \( f(0) \). Let's consider the property given in (i) with \( x = 0 \): \[ f(0 + h) = \frac{f(0) + f(h)}{f(0) + f(-h)} \] This simplifies to: \[ f(h) = \frac{f(0) + f(h)}{f(0) + f(-h)} \] Multiplying both sides by \((f(0) + f(-h))\), we get: \[ f(h)(f(0) + f(-h)) = f(0) + f(h) \] Expanding and rearranging leads us to: \[ f(0)f(h) + f(h)f(-h) = f(0) + f(h) \] If we let \( h = 0 \): \[ f(0)f(0) + f(0)f(0) = f(0) + f(0) \] \[ 2f(0)^2 = 2f(0) \] Since \( f(x) > 0 \), this implies \( f(0) \neq 0 \) and thus we can divide by \( 2 \): \[ f(0) = 1 \] ### (b) Show that \( f(-x)=\frac{1}{f(x)} \) for all real numbers \( x \). Using the initial condition (i), substitute \( h \) by \(-x\): \[ f(x + (-x)) = \frac{f(x) + f(-x)}{f(-x) + f(-(-x))} \] This simplifies to: \[ f(0) = \frac{f(x) + f(-x)}{f(-x) + f(x)} \] \[ 1 = \frac{f(x) + f(-x)}{f(-x) + f(x)} = 1 \] This does not yield new information directly for \( f(-x) \). Instead, we can plug \( x \) in the form (i) with the knowledge \( f(0) = 1 \): Let’s rewrite the first property as follows: \[ f(x + h) = \frac{1 + f(h)}{1 + f(-h)} \] For \( f(-x) \), by symmetry and positivity, assuming the functional relationship exists, let’s consider the property: Setting \( x = 1 \) gives us: \[ f(-1) = \frac{1}{f(1)} \] For \( f(-x) \): If substituting \( f(-x) = \frac{f(0)}{f(x)}\): \[ f(-x) = \frac{1}{f(x)} \] Thus \[ f(-x) = \frac{1}{f(x)} \] ### (c) Using part (b), show that \( f(x + h) = f(x) f(h) \) for all real numbers \( h \) and \( x \). Using part (b), replace \( f(-h) \) with \( \frac{1}{f(h)} \) in the formulation from (i): \[ f(x + h) = \frac{f(x) + f(h)}{f(-x) + f(-h)} = \frac{f(x) + f(h)}{\frac{1}{f(x)} + \frac{1}{f(h)}} \] This simplifies to: \[ f(x + h) = \frac{f(x)f(h)}{f(h) + f(x)} \cdot (f(h) f(x)) \Rightarrow f(x + h) = f(x) f(h) \] ### (d) Use the definition of the derivative to find \( f(x) \) in terms of \( f(x) \). By definition, the derivative is: \[ f'(0) = \lim_{h \to 0} \frac{f(h) - f(0)}{h} \] Now using what we have from parts above, and knowing \( f'(0) = -1 \): Given \( f(0) = 1 \), we can write: \[ f'(0) = \lim_{h \to 0} \frac{f(h) - 1}{h} = -1 \] To approximate \( f(x) \), if \( f(x) = e^{-x} \), we find it satisfies our previous points including all derivatives matching. Thus the resulting function is: \[ f(x) = e^{-

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad