Pregunta
upstudy study bank question image url

Simplify: \[ \frac{x^{3}-125}{5 x^{2}+26 x+5} \cdot \frac{x^{2}+10 x+25}{2 x^{2}+10 x+50} \div \frac{x^{2}-25}{2 x-6} \] Enter the numerator and denominator separately into each box below. Question Help: D Post to forum

Ask by Little Harmon. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Numerator: 1 Denominator: \(20x^{2}-56x-12\)

Solución

Calculate or simplify the expression \( (x^{3}-125)/(5x^{2}+26x+5) * (x^{2}+10x+25)/(2x^{2}+10x+50) / (x^{2}-25)/(2x-6) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\frac{\frac{\frac{\left(x^{3}-125\right)}{\left(5x^{2}+26x+5\right)}\times \left(x^{2}+10x+25\right)}{\left(2x^{2}+10x+50\right)}}{\left(x^{2}-25\right)}}{\left(2x-6\right)}\) - step1: Remove the parentheses: \(\frac{\frac{\frac{\frac{x^{3}-125}{5x^{2}+26x+5}\times \left(x^{2}+10x+25\right)}{2x^{2}+10x+50}}{x^{2}-25}}{2x-6}\) - step2: Multiply the terms: \(\frac{\frac{\frac{\frac{\left(x^{3}-125\right)\left(x+5\right)}{5x+1}}{2x^{2}+10x+50}}{x^{2}-25}}{2x-6}\) - step3: Divide the terms: \(\frac{\frac{\frac{\left(x-5\right)\left(x+5\right)}{2\left(5x+1\right)}}{x^{2}-25}}{2x-6}\) - step4: Divide the terms: \(\frac{\frac{1}{2\left(5x+1\right)}}{2x-6}\) - step5: Multiply by the reciprocal: \(\frac{1}{2\left(5x+1\right)}\times \frac{1}{2x-6}\) - step6: Multiply the terms: \(\frac{1}{2\left(5x+1\right)\left(2x-6\right)}\) - step7: Calculate: \(\frac{1}{20x^{2}-56x-12}\) The simplified expression is \(\frac{1}{20x^{2}-56x-12}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Let’s simplify the expression step by step. First, we focus on the three parts of the expression. The first part is: \[ \frac{x^{3}-125}{5 x^{2}+26 x+5} \] The numerator can be factored as a difference of cubes: \[ x^{3} - 125 = (x - 5)(x^{2} + 5x + 25) \] The denominator doesn’t factor neatly, so we'll leave it as is for now. Next, we look at: \[ \frac{x^{2}+10 x+25}{2 x^{2}+10 x+50} \] The numerator is a perfect square: \[ x^{2} + 10x + 25 = (x + 5)^{2} \] The denominator can be factored out with a 2: \[ 2x^{2} + 10x + 50 = 2(x^{2} + 5x + 25) \] Now we look at the last part: \[ \frac{x^{2}-25}{2 x-6} \] The numerator is a difference of squares: \[ x^{2} - 25 = (x - 5)(x + 5) \] Now rewriting the original expression with our factored components gives: \[ \frac{(x - 5)(x^{2} + 5x + 25)}{5x^{2} + 26x + 5} \cdot \frac{(x + 5)^{2}}{2(x^{2} + 5x + 25)} \div \frac{(x - 5)(x + 5)}{2x - 6} \] Now we can change the division to multiplication and rearrange: \[ \frac{(x - 5)(x^{2} + 5x + 25)}{5x^{2} + 26x + 5} \cdot \frac{(x + 5)^{2}}{2(x^{2} + 5x + 25)} \cdot \frac{2x - 6}{(x - 5)(x + 5)} \] Now, cancel the common factors: - \( (x - 5) \) cancels with itself. - \( (x^{2} + 5x + 25) \) cancels. - The \( 2 \) in the denominator can cancel with \( 2x - 6 = 2(x - 3) \). Ultimately, simplifying it down, we arrive at: **Numerator: \( (x + 5)(x - 3) \)** **Denominator: \( 5x^{2} + 26x + 5 \)** So, enter them as follows: Numerator: \( (x + 5)(x - 3) \) Denominator: \( 5x^{2} + 26x + 5 \)

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad