Simplify: \[ \frac{x^{3}-125}{5 x^{2}+26 x+5} \cdot \frac{x^{2}+10 x+25}{2 x^{2}+10 x+50} \div \frac{x^{2}-25}{2 x-6} \] Enter the numerator and denominator separately into each box below. Question Help: D Post to forum
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
Let’s simplify the expression step by step. First, we focus on the three parts of the expression. The first part is: \[ \frac{x^{3}-125}{5 x^{2}+26 x+5} \] The numerator can be factored as a difference of cubes: \[ x^{3} - 125 = (x - 5)(x^{2} + 5x + 25) \] The denominator doesn’t factor neatly, so we'll leave it as is for now. Next, we look at: \[ \frac{x^{2}+10 x+25}{2 x^{2}+10 x+50} \] The numerator is a perfect square: \[ x^{2} + 10x + 25 = (x + 5)^{2} \] The denominator can be factored out with a 2: \[ 2x^{2} + 10x + 50 = 2(x^{2} + 5x + 25) \] Now we look at the last part: \[ \frac{x^{2}-25}{2 x-6} \] The numerator is a difference of squares: \[ x^{2} - 25 = (x - 5)(x + 5) \] Now rewriting the original expression with our factored components gives: \[ \frac{(x - 5)(x^{2} + 5x + 25)}{5x^{2} + 26x + 5} \cdot \frac{(x + 5)^{2}}{2(x^{2} + 5x + 25)} \div \frac{(x - 5)(x + 5)}{2x - 6} \] Now we can change the division to multiplication and rearrange: \[ \frac{(x - 5)(x^{2} + 5x + 25)}{5x^{2} + 26x + 5} \cdot \frac{(x + 5)^{2}}{2(x^{2} + 5x + 25)} \cdot \frac{2x - 6}{(x - 5)(x + 5)} \] Now, cancel the common factors: - \( (x - 5) \) cancels with itself. - \( (x^{2} + 5x + 25) \) cancels. - The \( 2 \) in the denominator can cancel with \( 2x - 6 = 2(x - 3) \). Ultimately, simplifying it down, we arrive at: **Numerator: \( (x + 5)(x - 3) \)** **Denominator: \( 5x^{2} + 26x + 5 \)** So, enter them as follows: Numerator: \( (x + 5)(x - 3) \) Denominator: \( 5x^{2} + 26x + 5 \)