Pregunta
upstudy study bank question image url

10) Sid deposited \( \$ 420 \) into a savings account. The account earns \( 1 \frac{1}{2} \% \) interest, compounded annually. What is the balance of his account after 7 years? Answer in dollars and round to the nearest cent.

Ask by Ball Schultz. in the United States
Feb 28,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 7 years, Sid's account balance is approximately \$466.13.

Solución

To solve the problem, we use the compound interest formula:   A = P(1 + r)^t where:   • P is the principal amount (initial deposit),   • r is the annual interest rate (as a decimal),   • t is the number of years,   • A is the amount after t years. Here,   P = 420,   r = 1½% = 1.5% = 0.015,   t = 7. Plugging these values into the formula:   A = 420(1 + 0.015)^7   A = 420(1.015)^7 Calculating (1.015)^7 (using a calculator or careful multiplication):   (1.015)^7 ≈ 1.10984 Then, multiply by 420:   A ≈ 420 × 1.10984 ≈ 466.13 Thus, the balance of Sid's account after 7 years is approximately $466.13.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the balance of Sid's account after 7 years with compounded interest, we can use the formula for compound interest: \[ A = P(1 + r)^n \] where: - \( A \) is the amount of money accumulated after n years, including interest. - \( P \) is the principal amount (the initial amount of money, which is \( 420 \) dollars). - \( r \) is the annual interest rate (decimal) \( 1.5\% = 0.015 \). - \( n \) is the number of years the money is invested (which is \( 7 \)). Now, substituting in the values: \[ A = 420(1 + 0.015)^7 \] Calculating \( (1 + 0.015)^7 \): \[ (1.015)^7 \approx 1.1136 \] Now multiplying by the principal: \[ A \approx 420 \times 1.1136 \approx 467.112 \] Rounding to the nearest cent, the balance in the account after 7 years will be: \[ \text{Balance} \approx \$467.11 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad