Pregunta
upstudy study bank question image url

What is an equation of the line that passes through the points \( (0,-8) \) and \( (4,-3) \) ?

Ask by Crawford Chandler. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The equation of the line is \( y = \frac{5}{4}x - 8 \).

Solución

To find the equation of the line through the points (0, -8) and (4, -3), first compute the slope (m):   m = (y₂ - y₁) / (x₂ - x₁)   m = (-3 - (-8)) / (4 - 0)   m = (5) / (4)   m = 5/4 Since the point (0, -8) has an x-coordinate of 0, it represents the y-intercept (b). Therefore, the y-intercept is -8. The equation in slope-intercept form (y = mx + b) is:   y = (5/4)x - 8 This is the equation of the line passing through the two given points.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the equation of the line passing through the points \( (0,-8) \) and \( (4,-3) \), we first calculate the slope (m) using the formula \( m = \frac{y_2 - y_1}{x_2 - x_1} \). Here, \( y_2 = -3 \), \( y_1 = -8 \), \( x_2 = 4 \), and \( x_1 = 0 \). So, \( m = \frac{-3 - (-8)}{4 - 0} = \frac{5}{4} \). Now, using the point-slope form \( y - y_1 = m(x - x_1) \), and substituting one of our points, let's use \( (0,-8) \): \( y - (-8) = \frac{5}{4}(x - 0) \) simplifies to \( y + 8 = \frac{5}{4}x \). Rearranging, the equation of the line is \( y = \frac{5}{4}x - 8 \). This line connects two key points, and it beautifully illustrates how math can help us visualize relationships! Connecting points and finding slopes is like mapping out life's journey, showing us how we progress from one moment to the next. When working with equations of lines, a common pitfall is mixing up the x's and y's in the slope formula or forgetting the correct order of points. Remember, it’s vital to consistently label your coordinates correctly and keep a keen eye on the signs! Not catching these details can lead to wonky lines that don’t quite connect in the way you intended!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad