(b) If the employee invests \( \$ 200 \) instead of \( \$ 100 \) at \( 4.6 \% \), find the value of the annuity after 18 yr . Round the answer to the nearest cent. Compare the result to part (a). The value of the annuity after 18 yr is approximately \( \$ \) Doubling the monthly contribution approximately (Choose one) T the value of the annuity.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To calculate the future value of an annuity when investing \( \$200 \) monthly at \( 4.6\% \) for \( 18 \) years, we use the future value of an annuity formula: \[ FV = P \times \frac{(1 + r)^n - 1}{r} \] Here, \( P = 200 \), \( r = \frac{0.046}{12} \), and \( n = 18 \times 12 \). Plugging in these values, the annuity's future value equals approximately \( \$ 82,983.58 \). Doubling the monthly contribution significantly boosts the value of the annuity compared to just investing \( \$100 \). It demonstrates how increasing contributions can lead to exponential growth due to compound interest over time.
