1. Show that the rods of the equation \( (r+1) x^{2}+4 x+1=r \) are real for all real values of r.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To show that the rods of the equation \( (r+1) x^{2}+4 x+1=r \) are real for all real values of \( r \), we can rewrite the equation in standard quadratic form. Rearranging the terms: \[ (r + 1)x^2 + 4x + (1 - r) = 0. \] This is a quadratic equation \( Ax^2 + Bx + C = 0 \) where: - \( A = r + 1 \) - \( B = 4 \) - \( C = 1 - r \) For the roots (or "rods") of this quadratic equation to be real, the discriminant \( D \) must be non-negative. The discriminant is given by: \[ D = B^2 - 4AC = 4^2 - 4(r + 1)(1 - r). \] Calculating the discriminant, we have: \[ D = 16 - 4[(r+1)(1-r)] = 16 - 4[(r - r^2 + 1 - r)] = 16 - 4[1 - r^2] = 16 - 4 + 4r^2 = 12 + 4r^2. \] Since \( 4r^2 \) is always non-negative for all real \( r \), \( D \) will always be greater than or equal to 12. Therefore, the discriminant \( D \) is non-negative for all values of \( r \): \[ D \geq 12 > 0. \] This means that the quadratic has two distinct real roots for all real \( r \), proving that the rods are indeed real for any real value of \( r \).
