29.) \( 15 m=45 \) 36.) \( 2 m=124 \) 30.) \( 7 d=56 \) 37.) \( 14 r=42 \) 31.) \( 21 x=84 \) 38.) \( \mathbf{2 9 t}=77 \) 32.) \( 9 y=63 \) 39.) \( 9 x=143 \) 33.) \( \frac{2}{7} x=8 \) 40.) \( \frac{1}{2} v=10 \) 34.) \( \frac{3}{5} z=12 \) 41.) \( \frac{2}{3} c=8 \) 35.) \( \frac{4}{6} z=7^{1 / 3} \) 42.) \( \frac{3}{4} c=51 / 4 \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
Let’s dive into those equations and solve them! For each equation, you can figure out the variable by isolating it. Just remember, to isolate means to get the variable by itself on one side of the equation. For example, in the equation \( 15m = 45 \), you would divide both sides by 15 to find \( m = 3 \). Easy peasy! Finding the value of a variable like \( m \), \( x \), or \( y \) can tell you a lot about real-world scenarios. Let’s say \( m \) represents minutes you need to workout. If you find \( m = 3 \) from the equation \( 15m = 45 \), then you know you’re putting in a good effort—even if those minutes are just the warm-up! Join the math while living your daily life—it makes the numbers a lot less daunting!
