Pregunta
upstudy study bank question image url

Find the prime factors of 180

Ask by Lowe Carroll. in South Africa
Feb 05,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The prime factors of 180 are 2, 2, 3, 3, and 5, which can also be written as \(2^2 \times 3^2 \times 5\).

Solución

To find the prime factors of **180**, we'll perform a **prime factorization**, which involves breaking down the number into its smallest prime components. Here's a step-by-step guide: ### Step 1: Start with the Smallest Prime Number (2) 1. **180 ÷ 2 = 90** 2 is a prime factor. 2. **90 ÷ 2 = 45** 2 is a prime factor again. *Now, 45 is not divisible by 2.* ### Step 2: Move to the Next Prime Number (3) 3. **45 ÷ 3 = 15** 3 is a prime factor. 4. **15 ÷ 3 = 5** 3 is a prime factor again. *Now, 5 is not divisible by 3.* ### Step 3: Move to the Next Prime Number (5) 5. **5 ÷ 5 = 1** 5 is a prime factor. *Now, we've reached 1, and the factorization is complete.* ### Summary of Prime Factors - **2 × 2 × 3 × 3 × 5** This can also be expressed using exponents: - **2² × 3² × 5** ### Final Answer The prime factors of 180 are 2, 2, 3, 3, and 5. In exponential form, this is written as: **2² × 3² × 5**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the prime factors of 180, start by dividing by the smallest prime number, which is 2. Since 180 is even, you can divide by 2 to get 90. Next, divide 90 by 2 again to get 45. Now, 45 is not divisible by 2, so we move on to the next prime number, which is 3. Dividing 45 by 3 gives you 15, and dividing 15 by 3 again gives 5. Finally, 5 is a prime number itself. So, the prime factorization of 180 is 2² × 3² × 5. When working with prime factors, it's essential to organize them neatly. A common mistake is to forget to include all the factors, especially the powers when the prime is repeated. Remember, having a visual representation like a factor tree can help avoid this mishap—just keep branching down until you hit those prime numbers! Happy factoring!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad