Pregunta
upstudy study bank question image url

Question: A school organizes a lucky draw where students can win either a gift card ( \( 40 \% \) chance) or a book ( \( 25 \% \) chance). There is also a \( 15 \% \) chance that a student wins both. (a) What is the probability that a randomly selected student wins at least one prize? Are winning a gift card and winning a book mutually exclusive? (b) Suppose two students participate in the lucky draw. If prizes are awarded independently, what is the probability that both students win a gift card? How would this probability change if, after the first student wins a prize, the prize is removed and not replaced before the second student's draw?

Ask by Coleman Deleon. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Probability of Winning at Least One Prize:** 50% **Are Winning a Gift Card and Winning a Book Mutually Exclusive?** No, they are not mutually exclusive since there's a 15% chance a student wins both. **Problem (b) Answer:** - **With Independent Draws:** 16% chance both students win a gift card. - **Without Replacement:** 0% chance both students win a gift card (assuming only one gift card is available).

Solución

¡Inicia sesión para desbloquear respuestas gratis!

Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

star-icon Descubrir

Revisado y aprobado por el equipo de tutoría de UpStudy

Extra Insights

To find the probability that a randomly selected student wins at least one prize, we can use the inclusion-exclusion principle. The probability of winning at least one prize is given by: \[ P(G \cup B) = P(G) + P(B) - P(G \cap B) \] Where: - \( P(G) = 0.40 \) (probability of winning a gift card) - \( P(B) = 0.25 \) (probability of winning a book) - \( P(G \cap B) = 0.15 \) (probability of winning both) Substituting the values: \[ P(G \cup B) = 0.40 + 0.25 - 0.15 = 0.50 \] So, there is a 50% chance that a student wins at least one prize. Winning a gift card and winning a book are not mutually exclusive since there is a chance that a student can win both. For part (b), the probability that both students win a gift card (assuming independence) is: \[ P(G) \times P(G) = 0.40 \times 0.40 = 0.16 \] If the first student wins a gift card and the prize is removed before the second student's draw, the probability for the second student becomes: - There's one less gift card available, but since prizes are considered independently and we assume the total number remains the same (as the total number of students is not specified), the second student's probability remains at 0.40 since he is part of the same independent draw. Thus, the probability remains unchanged at 0.16, unless stated otherwise about the total number of gift cards and students.

preguntas relacionadas

Latest Probability Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad