Pregunta
upstudy study bank question image url

Suppose \( x_{1}, x_{2}, x_{2}, \ldots x_{n} \) is a random sample from a normal population with mean \( \mu \) and variance 16 . Find the test with the best critical region, that is, find the most powerful test, with a sample size of \( \mathrm{n}=16 \) and a significance level \( \propto=0.05 \) to test the simple null \( H_{\mathbf{a}}: \theta=10 \) hypothesis against the simple alternative hypothesis \( H_{1}: \theta=15 \), Also find the power of the test.

Ask by Schultz Knight. in Nigeria
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Reject \( H_0 \) if the sample mean \( \bar{x} \) is greater than 11.645. The power of the test when \( \mu = 15 \) is approximately 99.96%.

Solución

We are given a random sample x₁, x₂, …, x₁₆ from a N(μ, 16) population. We want to test the simple hypotheses   H₀: μ = 10  against  H₁: μ = 15 at a significance level of α = 0.05 using the most powerful test (by the Neyman–Pearson lemma). Step 1. Set Up the Likelihood Ratio Since the sample is from a normal distribution with known variance, the joint density under μ is   L(μ) = ∏[1/√(2π·16)] exp[–(xi – μ)²/(2·16)]     = constant × exp[–1/32 ∑(xi – μ)²]. The likelihood ratio comparing μ = 15 to μ = 10 is   Λ(x) = L(15) / L(10)     = exp{ –1/32 [∑(xi – 15)² – ∑(xi – 10)²] }. With some algebra (or by noticing that the test will be based on a monotone function of the sample mean) one can show that the most powerful test is of the form: reject H₀ when the sample mean x̄ is sufficiently large. Step 2. Find the Rejection Region Under H₀, x̄ is normally distributed:   x̄ ~ N(10, σ²/n) = N(10, 16/16) = N(10, 1). Since we desire a test of size α = 0.05 and larger values of x̄ make H₁ more plausible, we choose the critical region to be   C = { x̄ > c }. We need to choose c so that   P(x̄ > c | H₀) = 0.05. Under H₀, standardizing gives   P(x̄ > c) = P(Z > c – 10)  (where Z ~ N(0,1)). Thus, we require   P(Z > c – 10) = 0.05. The 95th percentile of the standard normal distribution is approximately 1.645, so we set   c – 10 = 1.645  ⇒  c = 11.645. Thus, the most powerful test is:   Reject H₀ if x̄ > 11.645. Step 3. Compute the Power The power of the test is the probability of correctly rejecting H₀ when H₁ is true (i.e., when μ = 15). Under H₁, the sample mean is distributed as   x̄ ~ N(15, 16/16) = N(15, 1). Thus, the power is   Power = P(x̄ > 11.645 | μ = 15)     = P(Z > (11.645 – 15))    (where Z ~ N(0,1))     = P(Z > –3.355). Since for a standard normal variable P(Z > –a) = 1 – Φ(–a) = Φ(a), we have   Power = Φ(3.355). Looking up the value (or using a calculator), Φ(3.355) is very close to 1 (approximately 0.9996). Step 4. Conclusion The most powerful test at the 0.05 significance level is: reject H₀ (i.e., conclude μ is 15 rather than 10) whenever the sample mean x̄ > 11.645. The power of this test, when μ is truly 15, is approximately 0.9996. Thus, the solution is: • Critical region: Reject H₀ if x̄ > 11.645. • Power of the test (at μ = 15): Approximately 99.96%.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the most powerful test for the given hypotheses, we will utilize the Neyman-Pearson Lemma. We are testing the null hypothesis \( H_0: \mu = 10 \) against the alternative hypothesis \( H_1: \mu = 15 \). Given: - Sample size \( n = 16 \) - Variance \( \sigma^2 = 16 \) (thus, standard deviation \( \sigma = 4 \)) - Significance level \( \alpha = 0.05 \) ### Step 1: Determine the critical region. Since we have a normal distribution, the test statistic can be calculated using the sample mean \( \bar{x} \): \[ Z = \frac{\bar{x} - \mu_0}{\sigma/\sqrt{n}} = \frac{\bar{x} - 10}{4/\sqrt{16}} = \frac{\bar{x} - 10}{1} \] Under the null hypothesis \( H_0 \), \( Z \) follows a standard normal distribution \( N(0, 1) \). We will find the critical value \( z_\alpha \) for \( \alpha = 0.05 \), which corresponds to a one-tailed test. Looking up the standard normal table, we find: \[ z_{0.05} \approx 1.645 \] This means that we will reject \( H_0 \) if \( Z > 1.645 \) or equivalently: \[ \bar{x} > 10 + 1.645 \cdot 1 = 11.645 \] ### Step 2: Calculate the power of the test. Next, we need to find the probability of correctly rejecting the null hypothesis when the alternative hypothesis is true (i.e., when \( \mu = 15 \)). The test statistic under the alternative hypothesis is now: \[ Z' = \frac{\bar{x} - 15}{4/\sqrt{16}} = \frac{\bar{x} - 15}{1} \] Substituting \( \bar{x} = 11.645 \): \[ Z' = \frac{11.645 - 15}{1} = -3.355 \] Now, we need the power, which is \( P(\text{Reject } H_0 | H_1 \text{ true}) = P(Z' > z_\alpha | \mu = 15) \). We find the Z-score and compare it to the standard normal distribution: \[ P(Z' > -3.355) \] Calculating the probability: \[ P(Z' > -3.355) = 1 - P(Z < -3.355) \] Looking up the value in the standard normal table: - \( P(Z < -3.355) \) is negligibly small, often considered close to 0. Thus: \[ P(Z' > -3.355) \approx 1 \] So the power of the test, which is the probability of correctly rejecting \( H_0 \) when \( \mu = 15 \), is approximately: \[ \text{Power} \approx 1 \] ### Conclusion: The best critical region for this test is to reject \( H_0 \) if \( \bar{x} > 11.645 \), and the power of the test against the alternative \( H_1: \mu = 15 \) is very high, approximately 1.

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad