Pregunta
upstudy study bank question image url

What is the APY for each of the two accounts described? (Answer as a percentage rounded to the nearest hundredth, so \#.\#\#. Only use numbers and the decimal point.) An account earning \( 2.75 \% \) interest compounded continuously would have an APY of An account earning \( 8.9 \% \) interest compounded continuously would have an APY of Respond to the following questions. (Answer as a percentage rounded to the nearest hundredth, so \#. \#\#. Only use numbers and the decimal point.) An investment account earns an APY of \( 7.8 \% \). The value of the account is compounded continuously. What is the APR of the account? The APR of the investment account is What is the APR of a savings account that, when compounded continuously, earns an APY of \( 5.29 \% \) ? The APR would be

Ask by Morgan Todd. in the United States
Dec 09,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

2.79, 8.94, 7.55, 5.13

Solución

To calculate the Annual Percentage Yield (APY) for accounts with continuously compounded interest, we can use the formula: \[ APY = e^r - 1 \] where \( r \) is the nominal interest rate (APR) expressed as a decimal, and \( e \) is the base of the natural logarithm (approximately equal to 2.71828). ### 1. APY for the account earning \( 2.75\% \) interest compounded continuously: Convert \( 2.75\% \) to decimal: \[ r = 0.0275 \] Now, calculate the APY: \[ APY = e^{0.0275} - 1 \approx 0.0275 + \frac{(0.0275^2)}{2} \approx 0.0275 + 0.000378125 \approx 0.027878125 \] \[ APY \approx 0.027878125 \times 100 \approx 2.7878125\% \] Rounded to the nearest hundredth: \[ APY \approx 2.79\% \] ### 2. APY for the account earning \( 8.9\% \) interest compounded continuously: Convert \( 8.9\% \) to decimal: \[ r = 0.089 \] Now, calculate the APY: \[ APY = e^{0.089} - 1 \approx 0.089 + \frac{(0.089^2)}{2} \approx 0.089 + 0.00039561 \approx 0.08939561 \] \[ APY \approx 0.08939561 \times 100 \approx 8.939561\% \] Rounded to the nearest hundredth: \[ APY \approx 8.94\% \] ### 3. APR for an investment account with an APY of \( 7.8\% \): To find the APR from the APY, we can rearrange the APY formula: \[ APY = e^{APR} - 1 \implies e^{APR} = APY + 1 \implies APR = \ln(APY + 1) \] Convert \( 7.8\% \) to decimal: \[ APY = 0.078 \] Now calculate the APR: \[ APR = \ln(0.078 + 1) = \ln(1.078) \approx 0.0755 \] Convert back to percentage: \[ APR \approx 0.0755 \times 100 \approx 7.55\% \] Rounded to the nearest hundredth: \[ APR \approx 7.55\% \] ### 4. APR for a savings account with an APY of \( 5.29\% \): Convert \( 5.29\% \) to decimal: \[ APY = 0.0529 \] Now calculate the APR: \[ APR = \ln(0.0529 + 1) = \ln(1.0529) \approx 0.0513 \] Convert back to percentage: \[ APR \approx 0.0513 \times 100 \approx 5.13\% \] Rounded to the nearest hundredth: \[ APR \approx 5.13\% \] ### Summary of Results: - APY for \( 2.75\% \) account: **2.79** - APY for \( 8.9\% \) account: **8.94** - APR for \( 7.8\% \) APY account: **7.55** - APR for \( 5.29\% \) APY account: **5.13**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To find the APY for an account earning \( 2.75\% \) interest compounded continuously, you can use the formula \( APY = e^r - 1 \), where \( r \) is the interest rate in decimal form. So, for \( r = 0.0275 \), the APY is approximately \( 2.81\% \). For the second account earning \( 8.9\% \), with \( r = 0.089 \), the APY works out to about \( 9.36\% \). Now, for the account with an APY of \( 7.8\% \), the APR can be found using the formula \( APR = ln(1 + APY) \). In this case, the APR is approximately \( 7.59\% \). Lastly, for the savings account earning an APY of \( 5.29\% \), the APR rounds to about \( 5.14\% \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad