Pregunta
Find the GCF. \( x^{5} y^{8}, x^{6} y^{6}, x^{4} y^{7},-x^{3} y^{3} \) The GCF is \( \square \).
Ask by Smith Wheeler. in the United States
Feb 24,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The GCF is \( x^{3} y^{3} \).
Solución
To find the Greatest Common Factor (GCF) for a set of monomials, we look at each variable separately and take the smallest exponent in which it appears.
The monomials are:
• x⁵y⁸
• x⁶y⁶
• x⁴y⁷
• –x³y³
1. For x: The exponents are 5, 6, 4, and 3. The smallest exponent is 3.
2. For y: The exponents are 8, 6, 7, and 3. The smallest exponent is 3.
Thus, the GCF is x³y³.
The GCF is □ = x³y³.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
To find the GCF of the terms \( x^{5}y^{8}, x^{6}y^{6}, x^{4}y^{7}, -x^{3}y^{3} \), we look at the lowest power of each variable across all terms. For \( x \), the smallest exponent is 3 (from \( -x^{3}y^{3} \)), and for \( y \), the smallest exponent is 3 (also from \( -x^{3}y^{3} \)). Therefore, the GCF is \( x^{3}y^{3} \). So, the GCF is \( x^{3} y^{3} \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium