Pregunta
upstudy study bank question image url

Question 8. Charlie wishes to fence off a rectangular rose garden in the middle of his backyard using 20 m of fencing material. By expressing the area as a quadratic function of the length of one side of the

Ask by Johnston Black. in Australia
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The area of the garden as a quadratic function of the length \( l \) is \( A(l) = -l^2 + 10l \).

Solución

To solve the problem, we need to express the area of the rectangular rose garden as a quadratic function of the length of one side. Let's denote the length of the garden as \( l \) and the width as \( w \). ### Step 1: Set up the perimeter equation The total amount of fencing material available is 20 m, which corresponds to the perimeter of the rectangle. The formula for the perimeter \( P \) of a rectangle is given by: \[ P = 2l + 2w \] Setting this equal to 20 m, we have: \[ 2l + 2w = 20 \] ### Step 2: Simplify the perimeter equation We can simplify this equation by dividing everything by 2: \[ l + w = 10 \] ### Step 3: Express width in terms of length From the equation \( l + w = 10 \), we can express \( w \) in terms of \( l \): \[ w = 10 - l \] ### Step 4: Set up the area function The area \( A \) of the rectangle is given by: \[ A = l \times w \] Substituting \( w \) from the previous step, we get: \[ A = l \times (10 - l) \] ### Step 5: Expand the area function Now, we can expand this expression: \[ A = 10l - l^2 \] ### Step 6: Write the area as a quadratic function The area \( A \) can be expressed as a quadratic function of \( l \): \[ A(l) = -l^2 + 10l \] This is a quadratic function in standard form \( A(l) = -l^2 + 10l \), where the coefficient of \( l^2 \) is negative, indicating that the parabola opens downwards. ### Conclusion The area of the rectangular rose garden as a quadratic function of the length of one side \( l \) is: \[ A(l) = -l^2 + 10l \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To maximize the area of Charlie's rectangular rose garden, he needs to express the area \( A \) in terms of one of the sides, say the length \( l \). Given that the perimeter is 20 m, the relationship between the length, width \( w \), and the perimeter is \( 2l + 2w = 20 \), which simplifies to \( w = 10 - l \). Thus, the area can be expressed as \( A(l) = l(10 - l) = 10l - l^2 \), a quadratic function where the area depends on the length of one side. To find the maximum area, Charlie should look for the vertex of this quadratic function. The vertex form provides the maximum point at \( l = \frac{-b}{2a} \). Here, \( a = -1 \) and \( b = 10 \), leading to \( l = \frac{10}{2} = 5 \). Plugging this length back into the equation for width gives him a perfect square garden of dimensions \( 5 m \) x \( 5 m \), yielding a maximum area of \( 25 m^2 \). Voilà!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad