A solid circular shaft with a diameter of 50 mm is subjected to a torque of 100 Nm . What is the maximum shear stress?
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Mind Expander
To find the maximum shear stress in a solid circular shaft, you can use the formula: \[ \tau_{max} = \frac{T \cdot r}{J} \] where \( T \) is the torque, \( r \) is the radius, and \( J \) is the polar moment of inertia. 1. **Calculate the radius**: The diameter is 50 mm, so the radius \( r = \frac{50}{2} = 25 \) mm or 0.025 m. 2. **Calculate the polar moment of inertia \( J \)**: For a solid circular shaft, \( J = \frac{\pi r^4}{2} = \frac{\pi (0.025)^4}{2} \approx 4.9 \times 10^{-9} \, \text{m}^4\). 3. **Substitute the values**: \[ \tau_{max} = \frac{100 \times 0.025}{4.9 \times 10^{-9}} \approx 510,204.08 \, \text{Pa} \, \text{or} \, 510.2 \, \text{kPa}. \] So, the maximum shear stress in the shaft is approximately 510.2 kPa.
