Pregunta
upstudy study bank question image url

Multiple Cholce Question The figure shows a \( 50-\mathrm{lb} \) uniform thin panel placed in a truck with end \( A \) resting on a rough horizontal surface and end \( B \) supported by a smooth vertical surface. Determine the minimum required coefficient of static friction at end \( A \) if the frictional force \( F=6 \mathrm{lb} \). 1.863 0.12 0.1023 0.5

Ask by Vaughn Chandler. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The minimum required coefficient of static friction at end \( A \) is **0.12**.

Solución

To determine the minimum required coefficient of static friction at end \( A \), we can use the following steps: 1. **Identify the forces acting on the panel:** - The weight of the panel \( W = 50 \, \text{lb} \) acts downward at the center of gravity. - The frictional force \( F = 6 \, \text{lb} \) acts at end \( A \) to prevent sliding. - The normal force \( N \) at end \( A \) acts upward. 2. **Set up the equilibrium equations:** - Since the panel is in static equilibrium, the sum of vertical forces must equal zero: \[ N - W = 0 \implies N = W = 50 \, \text{lb} \] 3. **Relate the frictional force to the normal force:** - The frictional force can be expressed in terms of the coefficient of static friction \( \mu_s \): \[ F = \mu_s N \] - Substituting the known values: \[ 6 \, \text{lb} = \mu_s (50 \, \text{lb}) \] 4. **Solve for the coefficient of static friction \( \mu_s \):** \[ \mu_s = \frac{F}{N} = \frac{6 \, \text{lb}}{50 \, \text{lb}} = 0.12 \] Thus, the minimum required coefficient of static friction at end \( A \) is \( 0.12 \). The correct answer is **0.12**.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To determine the minimum required coefficient of static friction (μ) at end A, we can start by analyzing the forces acting on the panel. Given that the frictional force \( F = 6 \, \mathrm{lb} \) and the weight of the panel is \( W = 50 \, \mathrm{lb} \), we can set up the equation for friction: \[ F = \mu W \] Now substituting the values into the equation: \[ 6 \, \mathrm{lb} = \mu (50 \, \mathrm{lb}) \] To find \( \mu \), we rearrange the equation: \[ \mu = \frac{F}{W} = \frac{6}{50} = 0.12 \] So the minimum required coefficient of static friction at end A is \( 0.12 \).

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad