Pregunta
upstudy study bank question image url

Multiple Cholce Questlon The figure shows a \( 60-\mathrm{lb} \) uniform thin panel placed in a truck with end \( A \) resting on a rough horizontal surface and end \( B \) supported by a smooth vertical surface. Determine the minimum required coefficient of static friction at end \( A \) if the frictional force \( F=6 \mathrm{lb} \). O 1.863 0.1 O 28.5

Ask by Hilton Guzman. in the United States
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The minimum required coefficient of static friction at end \( A \) is \( 0.1 \).

Solución

To solve this problem, we need to analyze the forces acting on the panel and apply the conditions for static equilibrium. ### Known Conditions: 1. Weight of the panel, \( W = 60 \, \text{lb} \) 2. Frictional force at end \( A \), \( F = 6 \, \text{lb} \) 3. The panel is uniform and thin, which means its weight acts at its center of gravity (midpoint). ### Steps to Solve: 1. **Identify Forces**: - The weight \( W \) acts downward at the center of the panel. - The normal force \( N_A \) acts upward at end \( A \). - The frictional force \( F \) acts horizontally at end \( A \). - The normal force \( N_B \) acts horizontally at end \( B \) (since it is a smooth surface, there is no friction). 2. **Static Equilibrium Conditions**: - The sum of vertical forces must equal zero: \[ N_A - W = 0 \quad \Rightarrow \quad N_A = W = 60 \, \text{lb} \] - The sum of horizontal forces must equal zero: \[ F - N_B = 0 \quad \Rightarrow \quad N_B = F = 6 \, \text{lb} \] 3. **Frictional Force**: - The frictional force \( F \) at end \( A \) is related to the normal force \( N_A \) and the coefficient of static friction \( \mu_s \): \[ F = \mu_s N_A \] - Substituting the known values: \[ 6 = \mu_s \cdot 60 \] 4. **Solve for \( \mu_s \)**: \[ \mu_s = \frac{6}{60} = 0.1 \] ### Conclusion: The minimum required coefficient of static friction at end \( A \) is \( 0.1 \). Thus, the correct answer is \( 0.1 \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the problem, we first analyze the forces acting on the panel. The weight \( W \) of the panel is given as \( 60 \) lb. At the end \( A \), the frictional force \( F \) is \( 6 \) lb. The static friction must counteract the component of the weight trying to slide towards \( B \). Using the formula for static friction \( F = \mu_s N \), we can find the normal force \( N \) at end \( A \). The sum of vertical forces must equal zero, hence \( N = W \) in a static situation. Thus: \[ \mu_s = \frac{F}{N} = \frac{6 \, \text{lb}}{60\, \text{lb}} = 0.1 \] Therefore, the minimum required coefficient of static friction at end \( A \) is \( 0.1 \). Now, let’s have fun with some historical context! Did you know that static friction is what allows objects to stay put before starting to slide? The Greeks first understood this concept around 300 BC when they explored the laws of motion with Aristotle’s principles. Though they didn't have the modern equations we use today, they were already grappling with the idea of forces and resistance long before Newton's laws came into play! And for a dash of real-world application, think about trucks transporting goods. Just like in your problem, those trucks rely on friction to keep panels and other loads stable as they travel. Without that friction, things could shift and topple, leading to costly damages. Drivers must know how to manage loads effectively, ensuring they secure them well to navigate those bumpy roads without accidents!

preguntas relacionadas

Latest Engineering Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad