Pregunta
upstudy study bank question image url

QUESTION 3: Application [10 marks] A 1200 kg car travelling North at \( \mathbf{2 0 . 0} \mathbf{m} \cdot \mathrm{s}^{-1} \) collides with a 1400 kg car travelling South at \( \mathbf{2 2 . 0} \mathrm{m} \cdot \mathrm{s}^{-1} \). The two cars collide and entangle when they move off together. Only \( \mathbf{7 5 \%} \) of the linear momentum is conserved during this collision. Question \( \mathbf{3 . 1} \) [2 marks] Calculate the initial momentum in the system before the collision. Question 3.2 [2 marks] Calculate the final momentum in the system after the collision. Question 3.3 [ 2 marks] Calculate the velocity with which both vehicles move off together. Question 3.4 [2 marks] Calculate the momentum lost due to external forces. Question 3.5 [2 marks] The collision lasts for 0,08 seconds before the cars reach their final velocity. Calculate the net external force that removes momentum from the system.

Ask by Willis Frazier. in South Africa
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

- **Initial Momentum:** \( -6800 \, \text{kg m/s} \) - **Final Momentum:** \( -5100 \, \text{kg m/s} \) - **Final Velocity:** \( -1.96 \, \text{m/s} \) - **Momentum Lost:** \( -1700 \, \text{kg m/s} \) - **Net External Force:** \( -21250 \, \text{N} \)

Solución

To solve the problem, we will follow the steps outlined in the questions, calculating the necessary values step by step. ### Known Conditions: - Mass of car 1 (\(m_1\)) = 1200 kg (travelling North) - Velocity of car 1 (\(v_1\)) = 20.0 m/s - Mass of car 2 (\(m_2\)) = 1400 kg (travelling South) - Velocity of car 2 (\(v_2\)) = -22.0 m/s (negative because it's in the opposite direction) - Momentum conservation = 75% ### Question 3.1: Calculate the initial momentum in the system before the collision. The initial momentum (\(p_{initial}\)) of the system can be calculated using the formula: \[ p_{initial} = m_1 \cdot v_1 + m_2 \cdot v_2 \] Substituting the values: \[ p_{initial} = (1200 \, \text{kg} \cdot 20.0 \, \text{m/s}) + (1400 \, \text{kg} \cdot -22.0 \, \text{m/s}) \] Calculating this: \[ p_{initial} = 24000 \, \text{kg m/s} - 30800 \, \text{kg m/s} = -6800 \, \text{kg m/s} \] ### Question 3.2: Calculate the final momentum in the system after the collision. The final momentum (\(p_{final}\)) is 75% of the initial momentum: \[ p_{final} = 0.75 \cdot p_{initial} \] Substituting the value of \(p_{initial}\): \[ p_{final} = 0.75 \cdot (-6800 \, \text{kg m/s}) = -5100 \, \text{kg m/s} \] ### Question 3.3: Calculate the velocity with which both vehicles move off together. After the collision, the two cars move off together, so we can use the combined mass (\(m_{total} = m_1 + m_2\)) and the final momentum to find the final velocity (\(v_f\)): \[ p_{final} = m_{total} \cdot v_f \] \[ m_{total} = 1200 \, \text{kg} + 1400 \, \text{kg} = 2600 \, \text{kg} \] Now substituting the values: \[ -5100 \, \text{kg m/s} = 2600 \, \text{kg} \cdot v_f \] Solving for \(v_f\): \[ v_f = \frac{-5100 \, \text{kg m/s}}{2600 \, \text{kg}} \approx -1.96 \, \text{m/s} \] ### Question 3.4: Calculate the momentum lost due to external forces. The momentum lost (\(p_{lost}\)) can be calculated as: \[ p_{lost} = p_{initial} - p_{final} \] Substituting the values: \[ p_{lost} = -6800 \, \text{kg m/s} - (-5100 \, \text{kg m/s}) = -6800 + 5100 = -1700 \, \text{kg m/s} \] ### Question 3.5: Calculate the net external force that removes momentum from the system. The net external force (\(F_{net}\)) can be calculated using the formula: \[ F_{net} = \frac{p_{lost}}{t} \] where \(t = 0.08 \, \text{s}\). Substituting the values: \[ F_{net} = \frac{-1700 \, \text{kg m/s}}{0.08 \, \text{s}} = -21250 \, \text{N} \] ### Summary of Results: - **Initial Momentum:** \( -6800 \, \text{kg m/s} \) - **Final Momentum:** \( -5100 \, \text{kg m/s} \) - **Final Velocity:** \( -1.96 \, \text{m/s} \) - **Momentum Lost:** \( -1700 \, \text{kg m/s} \) - **Net External Force:** \( -21250 \, \text{N} \) This concludes the calculations for the problem.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Before diving into these questions, it’s essential to remember that momentum is a vector quantity. In the case of this collision, one car's momentum will be positive and the other negative because they are moving in opposite directions. To calculate momentum, you can use the formula: **Momentum (p) = mass (m) × velocity (v)**. For the 1200 kg car moving North at \(20.0 \, \text{m/s}\), the momentum is \(24000 \, \text{kg m/s}\) (positive). For the 1400 kg car moving South at \(22.0 \, \text{m/s}\), the momentum is \(-30800 \, \text{kg m/s}\) (negative). Therefore, the initial total momentum is: \[ p_\text{initial} = 24000 - 30800 = -6800 \, \text{kg m/s} \] After the collision, we know that only 75% of the momentum is conserved: \[ p_\text{final} = 0.75 \times (-6800) = -5100 \, \text{kg m/s} \] Next up, using the conservation of momentum, the final combined mass of the two cars is: \[ m_\text{total} = 1200 + 1400 = 2600 \, \text{kg} \] We can find the final velocity (\(v_f\)) using: \[ p_\text{final} = m_\text{total} \times v_f \] Thus, \[ -5100 = 2600 \times v_f \implies v_f = -\frac{5100}{2600} \approx -1.96 \, \text{m/s} \] (negative indicates the southward direction). Now, the momentum lost due to external forces can be calculated: \[ \text{Momentum lost} = p_\text{initial} - p_\text{final} = -6800 - (-5100) = -1700 \, \text{kg m/s} \] Finally, to find the net external force that acted during the collision over the time period of 0.08 seconds, we use: \[ F = \frac{\text{momentum lost}}{\text{time}} = \frac{-1700}{0.08} = -21250 \, \text{N} \] (The negative sign indicates the force was acting in the opposite direction to momentum.) Keep those fun physics principles in mind as you tackle similar problems!

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad