Pregunta
upstudy study bank question image url

\( \left\{ \begin{array} { c } { y = 3 x + 5 } \\ { x + 2 y = - 1 8 } \end{array} \left\{ \begin{array} { l } { y = } \\ { y = } \end{array} \right. \right. \)

Ask by Pollard Delgado. in the United States
Feb 19,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

x = -4 and y = -7

Solución

We are given the system of equations:   1) y = 3x + 5   2) x + 2y = -18 Step 1. Substitute the expression for y from equation (1) into equation (2). Replace y in equation (2):   x + 2(3x + 5) = -18 Step 2. Simplify and solve for x.   x + 6x + 10 = -18   7x + 10 = -18 Subtract 10 from both sides:   7x = -28 Divide both sides by 7:   x = -4 Step 3. Substitute x = -4 back into equation (1) to solve for y.   y = 3(-4) + 5   y = -12 + 5   y = -7 Thus, the solution to the system is:   x = -4 and y = -7

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the system of equations, we start by substituting the expression for \( y \) from the first equation into the second equation. This gives us: 1. \( y = 3x + 5 \) 2. Substitute into \( x + 2y = -18 \): \( x + 2(3x + 5) = -18 \) Simplifying this, we get: \( x + 6x + 10 = -18 \) \( 7x + 10 = -18 \) \( 7x = -18 - 10 \) \( 7x = -28 \) \( x = -4 \) Now, we can substitute \( x = -4 \) back into the first equation to find \( y \): \( y = 3(-4) + 5 = -12 + 5 = -7 \) The solution to the system is \( x = -4 \) and \( y = -7 \). Now to explore some additional knowledge! Historical Background: The method of solving systems of equations has its roots in ancient civilizations, including the Babylonians who utilized geometric interpretations for linear equations. However, the systematic alignment and notation we use today were largely developed in the 17th century, ushering in a new era of algebra that made solving these problems much more accessible to mathematicians and students alike. Real-World Application: Systems of equations are everywhere in real life! They’re essential in fields like engineering, economics, and computing. For instance, when designing a bridge, engineers often use multiple equations to calculate forces and ensure stability. Similarly, in economics, businesses may analyze multiple factors like cost, profit, and sales to optimize financial outcomes, allowing them to make informed decisions.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad