Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l l } { a = ? } & { T 7 = a + ( 7 - 1 ) d } \\ { d = 7 } & { T 7 = a + 6 d = - 20 } \\ { d = ? } & { } \\ { } & { 120 = a t } \end{array} \right. \)

Ask by Perkins Hampton. in South Africa
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

First term \( a = -62 \), common difference \( d = 7 \), and \( t = -\frac{60}{31} \).

Solución

We start with the information given for an arithmetic sequence. The formulas and data are as follows: 1. The nth‐term formula for an arithmetic sequence is   Tn = a + (n – 1)d. In particular, for the 7th term we have:   T7 = a + (7 – 1)d = a + 6d. 2. You are told that d = 7 and that T7 = –20. In other words,   a + 6(7) = –20. Step 1. Solve for a:   a + 42 = –20   => a = –20 – 42   => a = –62. So the first term a is –62, and the common difference d is 7. Step 2. Interpreting 120 = at There is one more equation given:   120 = a t. Since we now know a = –62, we can solve for t (interpreting “t” as some unknown quantity):   120 = (–62)t   => t = 120 / (–62)   => t = –60/31  (after dividing numerator and denominator by 2). Thus, the unknown t is –60/31. Final Answers:   First term, a = –62,   Common difference, d = 7,   and from 120 = a·t, we get t = –60/31. If you interpret “120 = at” in another context, you would need to adjust the answer accordingly, but with the given information, these are the solutions.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's break this down step by step in an easy and fun way! First, we know from the equation \(T_7 = a + (7 - 1)d\) or simplified to \(T_7 = a + 6d\). Also, we're given that \(d = 7\). Plugging that into the equation gives us: \[T_7 = a + 6(7) = a + 42\] We know \(T_7 = -20\), so we can set up the equation: \[ a + 42 = -20 \] Solving for \(a\) gives us: \[ a = -20 - 42 = -62 \] Now that we have \(a\), we can use it to find the relationship with \(t\) as per the equation \(120 = a t\). Plugging \(a\) into the equation: \[ 120 = -62 t \] To find \(t\), we rearrange it to: \[ t = \frac{120}{-62} \approx -1.935 \] And there you have it! The values are \(a = -62\) and \(t \approx -1.935\). Mathematics can be like a treasure hunt—solving these equations is just uncovering the hidden gems!

preguntas relacionadas

ISCELÁNEA cribir, por simple inspección, el resultado de: \( \begin{array}{lll}(x+2)^{2} & \text { 14. }(x+y+1)(x-y-1) & \text { 27. }\left(2 a^{3}-5 b^{4}\right)^{2} \\ (x+2)(x+3) & \text { 15. }(1-a)(a+1) & \text { 28. }\left(a^{3}+12\right)\left(a^{3}-15\right) \\ (x+1)(x-1) & \text { 16. }(m-8)(m+12) & \text { 29. }\left(m^{2}-m+n\right)\left(n+m+m^{2}\right) \\ (x-1)^{2} & \text { 17. }\left(x^{2}-1\right)\left(x^{2}+3\right) & \text { 30. }\left(x^{4}+7\right)\left(x^{4}-11\right) \\ (n+3)(n+5) & \text { 18. }\left(x^{3}+6\right)\left(x^{3}-8\right) & \text { 31. }(11-a b)^{2} \\ (m-3)(m+3) & \text { 19. }\left(5 x^{3}+6 m^{4}\right)^{2} & \text { 32. }\left(x^{2} y^{3}-8\right)\left(x^{2} y^{3}+6\right) \\ (a+b-1)(a+b+1) & \text { 20. }\left(x^{4}-2\right)\left(x^{4}+5\right) & \text { 33. }(a+b)(a-b)\left(a^{2}-b^{2}\right) \\ (1+b)^{3} & \text { 21. }(1-a+b)(b-a-1) & \text { 34. }(x+1)(x-1)\left(x^{2}-2\right) \\ \left(a^{2}+4\right)\left(a^{2}-4\right) & \text { 22. }\left(a^{x}+b^{n}\right)\left(a^{x}-b^{n}\right) & \text { 35. }(a+3)\left(a^{2}+9\right)(a-3) \\ \left(3 a b-5 x^{2}\right)^{2} & \text { 23. }\left(x^{a+1}-8\right)\left(x^{a+1}+9\right) & \text { 36. }(x+5)(x-5)\left(x^{2}+1\right) \\ (a b+3)(3-a b) & \text { 24. }\left(a^{2} b^{2}+c^{2}\right)\left(a^{2} b^{2}-c^{2}\right) & \text { 37. }(a+1)(a-1)(a+2)(a-2) \\ (1-4 a x)^{2} & \text { 25. }(2 a+x)^{3} & \text { 36. }\left(x^{2}-11\right)\left(x^{2}-2\right)\end{array} \) \( \left(a^{2}+8\right)\left(a^{2}-7\right) \)
Álgebra Mexico Feb 26, 2025
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad