Consider the following three systems of linear equations. \[ \begin{array}{c} \text { System A } \\ \left\{\begin{array} { c c } { - 8 x + 5 y = 4 [ \mathrm { A } 1 ] } \\ { - 7 x + 2 y = 1 3 [ \mathrm { A } 2 ] } \end{array} \left\{\begin{array} { c } { 6 x + y = - 2 2 [ \mathrm { B } 1 ] } \\ { - 7 x + 2 y = 1 3 [ \mathrm { B } 2 ] } \end{array} \left\{\left\{\begin{array}{c} 6 x+y=-22[\mathrm{C} 1] \\ -19 x=57 \end{array}[\mathrm{C} 2]\right.\right.\right.\right. \end{array} \] Answer the questions below. For each, choose the transformation and then fill in the blank with the correct number. The arrow ( \( \rightarrow \) ) means the expression on the left becomes the expression on the right. (a) How do we transform System A into System B? \( \square \) \( \times \) Equation [A1] \( \rightarrow \) Equation [B1] \( \square \) \( \times \) Equation [A2] \( \rightarrow \) Equation [B2] \( \square \) \( \times \) Equation \( [\mathrm{A} 1]+ \) Equation \( [\mathrm{A} 2] \rightarrow \) Equation [B2] \( \square \) \( \times \) Equation \( [\mathrm{A} 2]+ \) Equation \( [\mathrm{A} 1] \rightarrow \) Equation \( [\mathrm{B} 1] \) (b) How do we transform System B into System C? \( \square \) \( \times \) Equation \( [B 1] \rightarrow \) Equation [C1] \( ] \times \) Equation \( [B 2] \rightarrow \) Equation [C2] \( \square \) \( \times \) Equation \( [B 1]+ \) Equation \( [B 2] \rightarrow \) Equation [C2] \( \square \) \( \times \) Equation \( [B 2]+ \) Equation \( [B 1] \rightarrow \) Equation \( [C 1] \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To transform System A into System B, we can manipulate the equations of System A to align with those of System B. (a) \( 1 \) \( \times \) Equation [A1] \( \rightarrow \) Equation [B1] \( 1 \) \( \times \) Equation [A2] \( \rightarrow \) Equation [B2] \( 1 \) \( \times \) Equation \( [\mathrm{A} 1]+ \) Equation \( [\mathrm{A} 2] \rightarrow \) Equation [B2] \( 1 \) \( \times \) Equation \( [\mathrm{A} 2]+ \) Equation \( [\mathrm{A} 1] \rightarrow \) Equation [\mathrm{B} 1] Now, let's move on to transforming System B into System C. (b) \( 1 \) \( \times \) Equation \( [B 1] \rightarrow \) Equation [C1] \( 3 \) \( \times \) Equation \( [B 2] \rightarrow \) Equation [C2] \( 1 \) \( \times \) Equation \( [B 1]+ \) Equation \( [B 2] \rightarrow \) Equation [C2] \( 1 \) \( \times \) Equation \( [B 2]+ \) Equation \( [B 1] \rightarrow \) Equation [C 1]
