Responder
1. \( \sin \theta = -\frac{3}{5} \)
2. \( \cos 2\theta = \frac{7}{25} \)
3. \( 13 \cos(Q + 30^\circ) = \frac{52\sqrt{3} + 39}{10} \)
4. Simplified expression: \( \cos(x)(\cos(x) + \sin(x)) \)
5. The identity is always true.
6. The identity is undefined when \( x = \frac{\pi}{6} + \frac{n\pi}{3} \), where \( n \) is an integer.
Solución
Let's break down the problem step by step.
### Question 1
1. **Given Conditions:**
- \( \theta \) is a reference angle.
- \( \tan \theta = -\frac{3}{4} \).
- The equation \( 2 \sin(3x + 20) = 2 \cos x \).
2. **Determine \( \sin \theta \) and \( \cos 2\theta \):**
- Since \( \tan \theta = \frac{\sin \theta}{\cos \theta} \), we can use the Pythagorean identity to find \( \sin \theta \) and \( \cos \theta \).
- Let \( \sin \theta = -3k \) and \( \cos \theta = 4k \) for some \( k \).
- Then, \( \sin^2 \theta + \cos^2 \theta = 1 \) gives us:
\[
(-3k)^2 + (4k)^2 = 1 \implies 9k^2 + 16k^2 = 1 \implies 25k^2 = 1 \implies k^2 = \frac{1}{25} \implies k = \frac{1}{5}
\]
- Thus, \( \sin \theta = -\frac{3}{5} \) and \( \cos \theta = \frac{4}{5} \).
3. **Calculate \( \sin \theta \):**
\[
\sin \theta = -\frac{3}{5}
\]
4. **Calculate \( \cos 2\theta \):**
- Using the double angle formula \( \cos 2\theta = 2\cos^2 \theta - 1 \):
\[
\cos 2\theta = 2\left(\frac{4}{5}\right)^2 - 1 = 2 \cdot \frac{16}{25} - 1 = \frac{32}{25} - 1 = \frac{32}{25} - \frac{25}{25} = \frac{7}{25}
\]
5. **Calculate \( 13 \cos(Q + 30^\circ) \):**
- This requires more information about \( Q \). Assuming \( Q = \theta \):
\[
\cos(Q + 30^\circ) = \cos(\theta + 30^\circ) = \cos \theta \cos 30^\circ - \sin \theta \sin 30^\circ
\]
- Using \( \cos 30^\circ = \frac{\sqrt{3}}{2} \) and \( \sin 30^\circ = \frac{1}{2} \):
\[
\cos(\theta + 30^\circ) = \frac{4}{5} \cdot \frac{\sqrt{3}}{2} - \left(-\frac{3}{5}\right) \cdot \frac{1}{2} = \frac{4\sqrt{3}}{10} + \frac{3}{10} = \frac{4\sqrt{3} + 3}{10}
\]
- Therefore,
\[
13 \cos(Q + 30^\circ) = 13 \cdot \frac{4\sqrt{3} + 3}{10} = \frac{52\sqrt{3} + 39}{10}
\]
### Simplify the Trigonometric Expression
Now, simplify:
\[
\sin(900^\circ - x) \cdot \cos(-x) - \sin(x - 180^\circ) \sin(90^\circ + x)
\]
1. **Using Trigonometric Identities:**
- \( \sin(900^\circ - x) = \sin(90^\circ + 810^\circ - x) = \cos(x) \)
- \( \cos(-x) = \cos(x) \)
- \( \sin(x - 180^\circ) = -\sin(x) \)
- \( \sin(90^\circ + x) = \cos(x) \)
2. **Substituting:**
\[
\cos(x) \cdot \cos(x) - (-\sin(x) \cdot \cos(x)) = \cos^2(x) + \sin(x) \cos(x)
\]
3. **Final Simplification:**
\[
= \cos^2(x) + \sin(x) \cos(x) = \cos(x)(\cos(x) + \sin(x))
\]
### Prove the Identity
Given:
\[
\frac{\sin 7x + \sin x}{2 \cos 3x} = \sin 4x
\]
1. **Using the Sum-to-Product Identities:**
\[
\sin 7x + \sin x = 2 \sin\left(\frac{7x + x}{2}\right) \cos\left(\frac{7x - x}{2}\right) = 2 \sin(4x) \cos(3x)
\]
- Therefore,
\[
\frac{2 \sin(4x) \cos(3x)}{2 \cos(3x)} = \sin(4x)
\]
- This proves the identity.
### Values for Which the Identity is Undefined
The identity is undefined when \( \cos(3x) = 0 \):
\[
3x = \frac{\pi}{2} + n\pi \implies x = \frac{\pi}{6} + \frac{n\pi}{3}, \quad n \in \mathbb{Z}
\]
### Summary of Answers
1. \( \sin \theta = -\frac{3}{5} \)
2. \( \cos 2\theta = \frac{7}{25} \)
3. \( 13 \cos(Q + 30^\circ) = \frac{52\sqrt{3} + 39}{10} \)
4. Simplified expression: \( \cos(x)(\cos(x) + \sin(x)) \)
5. Identity proved.
6. Undefined for \( x = \frac{\pi}{6} + \frac{n\pi}{3} \).
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución