- Use symmetry to evaluate the following integral. \[ \int(2-|x|) d x \]
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
The Deep Dive
To evaluate the integral \(\int (2 - |x|) \, dx\), let's first observe the symmetry of the function involved. The absolute value function, \(|x|\), indicates that the function is symmetrical about the y-axis. This allows us to consider only the positive side of the integral and then double the resulting area for the negative side. The integral from \(0\) to \(2\) can thus be evaluated as follows: 1. For \(x \geq 0\), \(|x| = x\), so the function becomes \(2 - x\). 2. Setting up the integral from \(0\) to \(2\): \[ \int_0^2 (2 - x) \, dx \] 3. Evaluating the integral: \[ = \left[ 2x - \frac{x^2}{2} \right]_0^2 = \left(2(2) - \frac{2^2}{2}\right) - \left(2(0) - \frac{0^2}{2}\right) \] \[ = \left(4 - 2\right) - 0 = 2 \] 4. Since the function is symmetrical, the total area over the interval from \(-2\) to \(2\) becomes: \[ \text{Total area} = 2 \times 2 = 4 \] Thus, the value of the integral \(\int_{-2}^2 (2 - |x|) \, dx\) is \(4\).
preguntas relacionadas
