5.1 Prove the identity: \( \frac{1-\sin 2 \mathrm{~A}}{\sin \mathrm{~A}-\cos \mathrm{A}}=\sin \mathrm{A}-\cos \mathrm{A} \) 5.2 Prove that: \( \cos \left(30^{\circ}+\theta\right)-\cos \left(30^{\circ}-\theta\right)=-\sin \theta \) 5.3 Consider the Geometric series: \( \cos \alpha+\sin 2 \alpha+4 \sin ^{2} \alpha \cdot \cos \alpha+\ldots \), where \( \alpha \) is an acute angle. Determine the value of \( r \), the constant ratio of the series.
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To prove the identity \( \frac{1-\sin 2 \mathrm{~A}}{\sin \mathrm{~A}-\cos \mathrm{A}}=\sin \mathrm{~A}-\cos \mathrm{A} \), we can use the sine double angle identity, which tells us that \( \sin 2\mathrm{~A} = 2 \sin\mathrm{~A} \cos\mathrm{~A} \). Substituting this into the left side, we can manipulate the expression: 1. Rewrite \( 1 - \sin 2A \) as \( 1 - 2 \sin A \cos A = (1 - \sin A)(1 + \sin A) \). 2. Substitute the terms into the equation and simplify the fractions to show equivalence to \( \sin A - \cos A \). For the second proof, let's explore \( \cos(30^{\circ}+\theta)-\cos(30^{\circ}-\theta) \). We can apply the cosine subtraction and addition formulas: 1. Use the identities \( \cos(a + b) = \cos a \cos b - \sin a \sin b \) and \( \cos(a - b) = \cos a \cos b + \sin a \sin b \). 2. Substitute \( a = 30^{\circ} \) and \( b = \theta \) to obtain \( \cos(30^{\circ}) (\cos \theta - \cos \theta) - \sin(30^{\circ}) (\sin \theta + \sin \theta) \). 3. Upon simplification, this will yield \( -\sin \theta \) as needed. Lastly, for the geometric series \( \cos \alpha + \sin 2\alpha + 4 \sin^2 \alpha \cos \alpha + \ldots \), we first notice a pattern. The first term is \( \cos \alpha \), while the second term is \( \sin 2\alpha = 2 \sin \alpha \cos \alpha \) and the third term can be expressed as \( 4 \sin^2 \alpha \cos \alpha = 2^2 \sin^2 \alpha \cos \alpha \). The common ratio \( r \) between successive terms is determined by dividing the second term by the first, yielding \( r = \frac{\sin 2\alpha}{\cos \alpha} = 2 \tan \alpha \). This pattern continues, revealing that \( r \) is consistently \( 2 \sin \alpha \) throughout the series. Thus \( r \) defines each new term in relation to the previous one effectively!
