Let \( R \) be the region bounded by the following curves. Find the volume of the solid generated when \( R \) is revolved about the \( x \)-axis. \( y=11 \sqrt{\sin x}, y=11, x=0 \) The volume of the solid is \( \square \) cubic units. (Type an exact answer.)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
To find the volume of the solid generated when the region \( R \) bounded by the curves \( y = 11 \sqrt{\sin x} \), \( y = 11 \), and \( x = 0 \) is revolved about the \( x \)-axis, we can set up the integral using the disk method. First, we need to determine the points of intersection of the two curves \( y = 11 \sqrt{\sin x} \) and \( y = 11 \): 1. Setting \( 11 \sqrt{\sin x} = 11 \): \[ \sqrt{\sin x} = 1 \implies \sin x = 1 \] The solution for \( \sin x = 1 \) in the interval from \(0\) to \(\frac{\pi}{2}\) is \( x = \frac{\pi}{2} \). Next, we find the volume \( V \) when the region is revolved about the \( x \)-axis from \( x = 0 \) to \( x = \frac{\pi}{2} \): The volume \( V \) can be calculated by the integral: \[ V = \pi \int_{0}^{\frac{\pi}{2}} (f(x)^2 - g(x)^2) \, dx \] where \( f(x) = 11 \) and \( g(x) = 11 \sqrt{\sin x} \). Thus, the volume becomes: \[ V = \pi \int_{0}^{\frac{\pi}{2}} (11^2 - (11 \sqrt{\sin x})^2) \, dx = \pi \int_{0}^{\frac{\pi}{2}} (121 - 121 \sin x) \, dx \] \[ = \pi \cdot 121 \int_{0}^{\frac{\pi}{2}} (1 - \sin x) \, dx \] Now, we calculate the integral: \[ \int (1 - \sin x) \, dx = x - (-\cos x) = x + \cos x. \] Thus, evaluating from \( 0 \) to \( \frac{\pi}{2} \): \[ \left[ x + \cos x \right]_{0}^{\frac{\pi}{2}} = \left( \frac{\pi}{2} + \cos\left(\frac{\pi}{2}\right) \right) - \left( 0 + \cos(0) \right) = \frac{\pi}{2} + 0 - 1 = \frac{\pi}{2} - 1. \] Therefore, substituting back into the volume equation: \[ V = \pi \cdot 121 \left(\frac{\pi}{2} - 1 \right) = \frac{121\pi^2}{2} - 121\pi. \] Thus, the final volume of the solid is: \[ V = \frac{121\pi^2}{2} - 121\pi \quad \text{cubic units.} \]
