Use the Intemediale Walue Theorem to show that the polynomial f(x) \( =2 x^{4}-7 x^{2}+1 \) has a real zero between -1 and 0. Select the conect choice below and fill in the answer bowes to complete your choice. A. Because f(x) is a polynomial with f( -1 )= \( \square \) \( <0 \) and \( f(0)= \) \( \square \) \( >0 \), the function has a real zero between -1 and 0. B. Because f(x) is a polynomial with fi( -1 )= \( \square \) \( >0 \) and \( 7(\mathrm{D})= \) \( \square \) \( >0 \), the function has a real zero between -1 ando. C. Because f(x) is a potynomial with \( f(-1)= \) \( \square \) \( <0 \) and \( f(0)= \) \( \square \) \( <0 \), the funcion has a real zero between -1 and 0. D. Because \( ( \) (a) is a polynomial with \( \mathrm{f}(-1)= \) \( \square \) \( >0 \) and \( F(0)= \) \( \square \) \( <0 \), the function has a real zero between - 1 and 0.
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Bonus Knowledge
Let's evaluate the polynomial \( f(x) = 2x^4 - 7x^2 + 1 \) at the points -1 and 0. First, for \( f(-1) \): \[ f(-1) = 2(-1)^4 - 7(-1)^2 + 1 = 2(1) - 7(1) + 1 = 2 - 7 + 1 = -4. \] Next, for \( f(0) \): \[ f(0) = 2(0)^4 - 7(0)^2 + 1 = 0 - 0 + 1 = 1. \] With these evaluations: - \( f(-1) = -4 < 0 \) - \( f(0) = 1 > 0 \) Thus, the correct choice is: A. Because f(x) is a polynomial with \( f(-1)= -4 < 0 \) and \( f(0)= 1 > 0 \), the function has a real zero between -1 and 0.
preguntas relacionadas
