Responder
The integral of \( x^{3} \sqrt{9+x^{2}} \) with respect to \( x \) is:
\[ \frac{(9+x^{2})^{2}\sqrt{9+x^{2}}}{5} - 27\sqrt{9+x^{2}} - 3x^{2}\sqrt{9+x^{2}} + C \]
where \( C \) is the constant of integration.
Solución
Calculate the integral \( \int x^{3} \sqrt{9+x^{2}} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int x^{3}\sqrt{9+x^{2}} dx\)
- step1: Rewrite the expression:
\(\int x^{3}\left(9+x^{2}\right)^{\frac{1}{2}} dx\)
- step2: Use the substitution \(dx=\frac{1}{2x} dt\) to transform the integral\(:\)
\(\int x^{3}\left(9+x^{2}\right)^{\frac{1}{2}}\times \frac{1}{2x} dt\)
- step3: Simplify:
\(\int \frac{\left(9+x^{2}\right)^{\frac{1}{2}}x^{2}}{2} dt\)
- step4: Use the substitution \(t=x^{2}\) to transform the integral\(:\)
\(\int \frac{\left(9+t\right)^{\frac{1}{2}}t}{2} dt\)
- step5: Rewrite the expression:
\(\int \frac{1}{2}\left(9+t\right)^{\frac{1}{2}}t dt\)
- step6: Use properties of integrals:
\(\frac{1}{2}\times \int \left(9+t\right)^{\frac{1}{2}}t dt\)
- step7: Use the substitution \(dt=1 dv\) to transform the integral\(:\)
\(\frac{1}{2}\times \int \left(9+t\right)^{\frac{1}{2}}t\times 1 dv\)
- step8: Simplify:
\(\frac{1}{2}\times \int \left(9+t\right)^{\frac{1}{2}}t dv\)
- step9: Use the substitution \(v=9+t\) to transform the integral\(:\)
\(\frac{1}{2}\times \int v^{\frac{1}{2}}\left(v-9\right) dv\)
- step10: Multiply the terms:
\(\frac{1}{2}\times \int \left(v^{\frac{3}{2}}-9v^{\frac{1}{2}}\right) dv\)
- step11: Use properties of integrals:
\(\frac{1}{2}\left(\int v^{\frac{3}{2}} dv+\int -9v^{\frac{1}{2}} dv\right)\)
- step12: Calculate:
\(\frac{1}{2}\times \int v^{\frac{3}{2}} dv+\frac{1}{2}\times \int -9v^{\frac{1}{2}} dv\)
- step13: Evaluate the integral:
\(\frac{v^{\frac{5}{2}}}{5}+\frac{1}{2}\times \int -9v^{\frac{1}{2}} dv\)
- step14: Evaluate the integral:
\(\frac{v^{\frac{5}{2}}}{5}-3v^{\frac{3}{2}}\)
- step15: Substitute back:
\(\frac{\left(9+t\right)^{\frac{5}{2}}}{5}-3\left(9+t\right)^{\frac{3}{2}}\)
- step16: Substitute back:
\(\frac{\left(9+x^{2}\right)^{\frac{5}{2}}}{5}-3\left(9+x^{2}\right)^{\frac{3}{2}}\)
- step17: Simplify:
\(\frac{\sqrt{\left(9+x^{2}\right)^{5}}}{5}-3\left(9+x^{2}\right)^{\frac{3}{2}}\)
- step18: Simplify:
\(\frac{\sqrt{\left(9+x^{2}\right)^{5}}}{5}-3\sqrt{\left(9+x^{2}\right)^{3}}\)
- step19: Expand the expression:
\(\frac{\left(9+x^{2}\right)^{2}\sqrt{9+x^{2}}}{5}+\left(-27-3x^{2}\right)\sqrt{9+x^{2}}\)
- step20: Expand the expression:
\(\frac{\left(9+x^{2}\right)^{2}\sqrt{9+x^{2}}}{5}-27\sqrt{9+x^{2}}-3x^{2}\sqrt{9+x^{2}}\)
- step21: Add the constant of integral C:
\(\frac{\left(9+x^{2}\right)^{2}\sqrt{9+x^{2}}}{5}-27\sqrt{9+x^{2}}-3x^{2}\sqrt{9+x^{2}} + C, C \in \mathbb{R}\)
The integral of \(x^{3} \sqrt{9+x^{2}}\) with respect to \(x\) is given by:
\[ \int x^{3} \sqrt{9+x^{2}} d x = \frac{(9+x^{2})^{2}\sqrt{9+x^{2}}}{5} - 27\sqrt{9+x^{2}} - 3x^{2}\sqrt{9+x^{2}} + C \]
where \(C\) is the constant of integration.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución