Pregunta
upstudy study bank question image url

1.2 A bullet is fired at a muzzle velocity of \( 125 \mathrm{~m} / \mathrm{s} \) at an angle of \( 25^{\circ} \) to the horizontal. Calculate the following: 1.2.1 The horizontal distance of the bullet after 8 seconds 1.2.2 The maximum height of the bullet

Ask by Moran Joseph. in South Africa
Feb 21,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

After 8 seconds, the bullet travels about 906 meters horizontally. The bullet reaches a maximum height of approximately 142 meters.

Solución

We are given:  • Muzzle velocity, u = 125 m/s  • Angle, θ = 25°  • Time for horizontal distance, t = 8 s  • Acceleration due to gravity, g = 9.8 m/s² Step 1. Find the initial velocity components:  • Horizontal component, uₓ = u cos θ = 125 cos 25°  • Vertical component, uᵧ = u sin θ = 125 sin 25° Using approximate values:  cos 25° ≈ 0.9063 and sin 25° ≈ 0.4226 Thus:  uₓ = 125 × 0.9063 ≈ 113.29 m/s,  uᵧ = 125 × 0.4226 ≈ 52.83 m/s. --------------------------------------------------------------------- 1.2.1 Horizontal Distance after 8 Seconds Since there is no horizontal acceleration (ignoring air resistance), the horizontal distance x is given by:  x = uₓ × t So:  x = 113.29 m/s × 8 s ≈ 906.32 m Thus, after 8 seconds the bullet is approximately 906 m away horizontally. --------------------------------------------------------------------- 1.2.2 Maximum Height of the Bullet The maximum height for a projectile (when starting from ground level) is given by:  H = (uᵧ)² / (2g) Substitute in:  H = (52.83 m/s)² / (2 × 9.8 m/s²) First, calculate (52.83)²:  (52.83)² ≈ 2791.4 m²/s² Then:  H ≈ 2791.4 / 19.6 ≈ 142.4 m Thus, the maximum height the bullet reaches is approximately 142 m. --------------------------------------------------------------------- Final Answers:  1.2.1 The horizontal distance after 8 seconds is approximately 906 m.  1.2.2 The maximum height reached by the bullet is approximately 142 m.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the horizontal distance of the bullet after 8 seconds, you first need to determine the horizontal component of the velocity. The horizontal component \( V_x \) can be calculated by: \[ V_x = V \cdot \cos(\theta) = 125 \cdot \cos(25^{\circ}) \] Calculating \( \cos(25^{\circ}) \) gives approximately \( 0.9063 \), so: \[ V_x \approx 125 \cdot 0.9063 \approx 113.29 \, \mathrm{m/s} \] Now, multiply the horizontal velocity by time: \[ \text{Horizontal Distance} = V_x \cdot t = 113.29 \cdot 8 \approx 906.32 \, \mathrm{m} \] Now for the maximum height, you need to find the vertical component of the velocity: \[ V_y = V \cdot \sin(\theta) = 125 \cdot \sin(25^{\circ}) \] Calculating \( \sin(25^{\circ}) \) gives approximately \( 0.4226 \), so: \[ V_y \approx 125 \cdot 0.4226 \approx 52.83 \, \mathrm{m/s} \] To find the maximum height (\( H \)), use the formula where the final vertical velocity at the peak is zero: \[ H = \frac{V_y^2}{2g} = \frac{(52.83)^2}{2 \cdot 9.81} \] Calculating gives: \[ H \approx \frac{2796.4689}{19.62} \approx 142.36 \, \mathrm{m} \] So the horizontal distance after 8 seconds is approximately \( 906.32 \, \mathrm{m} \) and the maximum height of the bullet is approximately \( 142.36 \, \mathrm{m} \).

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad