1.2 A bullet is fired at a muzzle velocity of \( 125 \mathrm{~m} / \mathrm{s} \) at an angle of \( 25^{\circ} \) to the horizontal. Calculate the following: 1.2.1 The horizontal distance of the bullet after 8 seconds 1.2.2 The maximum height of the bullet
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
To find the horizontal distance of the bullet after 8 seconds, you first need to determine the horizontal component of the velocity. The horizontal component \( V_x \) can be calculated by: \[ V_x = V \cdot \cos(\theta) = 125 \cdot \cos(25^{\circ}) \] Calculating \( \cos(25^{\circ}) \) gives approximately \( 0.9063 \), so: \[ V_x \approx 125 \cdot 0.9063 \approx 113.29 \, \mathrm{m/s} \] Now, multiply the horizontal velocity by time: \[ \text{Horizontal Distance} = V_x \cdot t = 113.29 \cdot 8 \approx 906.32 \, \mathrm{m} \] Now for the maximum height, you need to find the vertical component of the velocity: \[ V_y = V \cdot \sin(\theta) = 125 \cdot \sin(25^{\circ}) \] Calculating \( \sin(25^{\circ}) \) gives approximately \( 0.4226 \), so: \[ V_y \approx 125 \cdot 0.4226 \approx 52.83 \, \mathrm{m/s} \] To find the maximum height (\( H \)), use the formula where the final vertical velocity at the peak is zero: \[ H = \frac{V_y^2}{2g} = \frac{(52.83)^2}{2 \cdot 9.81} \] Calculating gives: \[ H \approx \frac{2796.4689}{19.62} \approx 142.36 \, \mathrm{m} \] So the horizontal distance after 8 seconds is approximately \( 906.32 \, \mathrm{m} \) and the maximum height of the bullet is approximately \( 142.36 \, \mathrm{m} \).
preguntas relacionadas
