Example 1.8 1 What is the power set of the \( \emptyset \) ? What is the power set of \( \{\emptyset\} \) 2 Determine whether these statements are true or false. a. \( 0 \in \emptyset \) b. \( \emptyset \in\{0\} \) c. \( \{0\} \in\{0\} \) d. \( 0 \subset \emptyset \) e. \( \{\emptyset\} \in\{\emptyset\} \) f. \( \{0\} \subseteq\{0 \).
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Beyond the Answer
The power set of the \( \emptyset \) (the empty set) is \( \{\emptyset\} \). This may seem surprising, but it follows from the definition of a power set, which includes all subsets of a given set— and since the empty set has no elements, its only subset is itself. On the other hand, the power set of \( \{\emptyset\} \) is \( \{\emptyset, \{\emptyset\}\} \), which contains the empty set and the set containing the empty set. Now, let's evaluate the statements! a. False, as the empty set contains no elements. b. True, since the empty set is indeed an element of any set that contains it. c. False, because \( \{0\} \) itself isn't an element of \( \{0\} \). d. True, as the empty set is a subset of any set, including itself. e. True, since \( \{\emptyset\} \) is an element of the set \( \{\emptyset\} \). f. True, a set is always a subset of itself.
