Pregunta
3. \( 2^{\frac{1}{3}} \cdot 4^{\frac{1}{3}} \) a. \( \sqrt[3]{2} \) b. \( \sqrt{2} \) c. 4 d. 2
Ask by Warren Lee. in the United States
Dec 03,2024
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The expression simplifies to 2. Therefore, the correct answer is d. 2.
Solución
Calculate or simplify the expression \( 2^(1/3) * 4^(1/3) \).
Calculate the value by following steps:
- step0: Calculate:
\(2^{\frac{1}{3}}\times 4^{\frac{1}{3}}\)
- step1: Rewrite the expression:
\(2^{\frac{1}{3}}\times 2^{\frac{2}{3}}\)
- step2: Simplify:
\(2\)
The expression \(2^{\frac{1}{3}} \cdot 4^{\frac{1}{3}}\) simplifies to 2.
Therefore, the correct answer is d. 2.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


The Deep Dive
To simplify \( 2^{\frac{1}{3}} \cdot 4^{\frac{1}{3}} \), we first rewrite 4 as \( 2^2 \). This gives us: \[ 2^{\frac{1}{3}} \cdot (2^2)^{\frac{1}{3}} = 2^{\frac{1}{3}} \cdot 2^{\frac{2}{3}} = 2^{\frac{1}{3} + \frac{2}{3}} = 2^{1} = 2 \] So, the answer is d. 2! Now you can impress your friends with your mastery of exponents!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium