Pregunta
upstudy study bank question image url

16 Use reference angles to find the exact value of the following expression. Do not use a calculator. \[ \begin{array}{l}\tan 780^{\circ} \\ \text { Select the correct choice below and, if necessary, fill in the answer box to complete your choice. } \\ \text { A. } \tan 780^{\circ}= \\ \text { (Simplify your answer. Type an exact answer, using radicals as needed. Use integers or fractions for any } n \\ \text { the denominator.) } \\ \text { B. The answer is undefined. }\end{array} \]

Ask by Murray Wells. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\[ \tan 780^\circ = \sqrt{3} \]

Solución

To find \(\tan 780^\circ\), we first need to reduce the angle to an equivalent angle within the range of \(0^\circ\) to \(360^\circ\). We can do this by subtracting \(360^\circ\) until we get an angle in that range. 1. Subtract \(360^\circ\) from \(780^\circ\): \[ 780^\circ - 360^\circ = 420^\circ \] 2. Subtract \(360^\circ\) again: \[ 420^\circ - 360^\circ = 60^\circ \] Now we have: \[ 780^\circ \equiv 60^\circ \quad (\text{mod } 360^\circ) \] Next, we can find \(\tan 60^\circ\): \[ \tan 60^\circ = \sqrt{3} \] Thus, the exact value of \(\tan 780^\circ\) is: \[ \tan 780^\circ = \sqrt{3} \] So the answer is: \[ \text{A. } \tan 780^\circ = \sqrt{3} \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

To find \(\tan 780^{\circ}\), start by reducing the angle to its equivalent within the first rotation (0 to 360 degrees). Subtracting 720 degrees (2 full rotations), we have: \[ 780^{\circ} - 720^{\circ} = 60^{\circ} \] Now calculate \(\tan 60^{\circ}\), which is known to be \(\sqrt{3}\). Thus, we can conclude: \[ \tan 780^{\circ} = \sqrt{3} \] So, the correct choice is: A. \(\tan 780^{\circ} = \sqrt{3}\). Understanding reference angles is key in trigonometry since they simplify calculations by reducing larger angles to their corresponding acute angles! Additionally, the unit circle is your best friend here; it's a wonderful visual tool that helps in figuring out the exact values for trigonometric functions without breaking a sweat. When working with angles beyond 360 degrees, always remember the periodic nature of trig functions. For instance, both sine and cosine functions repeat every 360 degrees, while tangent does so every 180 degrees. This can prevent a frosty brain freeze and save you time during calculations!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad