Pregunta
upstudy study bank question image url

Small Business Owners Seventy-six percent of small business owners do not have a college degree. If a random sample of 50 small business owners is selected, find the probability that exactly 41 will not have a college degree. Round the final answer to at least 4 decimal places and intermediate \( z \)-value calculations to 2 decimal places. \( P(X=41)= \)

Ask by Cook Davies. in the United States
Mar 11,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The probability that exactly 41 out of 50 small business owners do not have a college degree is approximately 0.0851.

Solución

We are given that 76% of small business owners do not have a college degree. Let \( X \) be the number of owners in a sample of 50 without a college degree. Then \[ X \sim \text{Binomial}(n=50,\ p=0.76). \] We need to find the probability that exactly 41 do not have a degree, i.e., \[ P(X=41)= \binom{50}{41}(0.76)^{41}(0.24)^{50-41}. \] Using symmetry of the binomial coefficient, note that \[ \binom{50}{41} = \binom{50}{9}. \] Thus, \[ P(X=41)= \binom{50}{41}(0.76)^{41}(0.24)^9. \] To compute this probability: 1. **Binomial Coefficient:** \[ \binom{50}{41} = \binom{50}{9} = \frac{50!}{9!(50-9)!}. \] 2. **Probability term:** \[ (0.76)^{41}(0.24)^9. \] Combining these, \[ P(X=41)= \binom{50}{41}(0.76)^{41}(0.24)^9. \] Using a calculator or software to evaluate the above expression yields approximately \[ P(X=41) \approx 0.0851. \] Thus, \[ P(X=41) \approx 0.0851. \]

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probability that exactly 41 out of 50 small business owners do not have a college degree, we can use the binomial probability formula: \[ P(X = k) = \binom{n}{k} p^k (1-p)^{n-k} \] where \( n \) is the number of trials (50), \( k \) is the number of successful trials (41), and \( p \) is the probability of success (0.76). Using this, we first calculate \( \binom{50}{41} \): \[ \binom{50}{41} = \frac{50!}{41!(50-41)!} = \frac{50!}{41!9!} \] Now, we plug in the values: \[ P(X = 41) = \binom{50}{41} (0.76)^{41} (0.24)^{9} \] Calculating these values: 1. \( \binom{50}{41} \) can be computed or looked up to be approximately 0.0811. 2. \( (0.76)^{41} \) is approximately 0.0001. 3. \( (0.24)^{9} \) is approximately 0.000009. Now all together: \[ P(X = 41) \approx 0.0811 \times 0.0001 \times 0.000009 \approx 0.00007299 \] Thus, \( P(X=41) \approx 0.0001 \) rounded to four decimal places. Final answer: \( P(X=41) \approx 0.0001 \)

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad