Pregunta
upstudy study bank question image url

What is the volume of the parallelepiped defined by the vectors \( \left[\begin{array}{l}8 \\ 5 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 6 \\ -3\end{array}\right],\left[\begin{array}{c}-4 \\ -7 \\ 9\end{array}\right] \) ? Volume \( = \) Ex. 1 What is the volume of the tetrahedron defined by the vectors \( \left[\begin{array}{c}8 \\ 5 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 6 \\ -3\end{array}\right],\left[\begin{array}{c}-4 \\ -7 \\ 9\end{array}\right] \) ?

Ask by Hamilton Chavez. in the United States
Mar 20,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The volume of the parallelepiped is 324, and the volume of the tetrahedron is 54.

Solución

Let the vectors be \[ \mathbf{v}_1 = \begin{bmatrix} 8 \\ 5 \\ 0 \end{bmatrix}, \quad \mathbf{v}_2 = \begin{bmatrix} 0 \\ 6 \\ -3 \end{bmatrix}, \quad \mathbf{v}_3 = \begin{bmatrix} -4 \\ -7 \\ 9 \end{bmatrix}. \] ### Step 1. Compute the Scalar Triple Product The volume of the parallelepiped is given by the absolute value of the scalar triple product: \[ V_{\text{parallelepiped}} = \left| \mathbf{v}_1 \cdot \left( \mathbf{v}_2 \times \mathbf{v}_3 \right) \right|. \] #### a. Compute the Cross Product \(\mathbf{v}_2 \times \mathbf{v}_3\) Using the formula \[ \mathbf{a} \times \mathbf{b} = \begin{bmatrix} a_y b_z - a_z b_y \\ a_z b_x - a_x b_z \\ a_x b_y - a_y b_x \end{bmatrix}, \] we let \(\mathbf{a} = \mathbf{v}_2\) and \(\mathbf{b} = \mathbf{v}_3\). Thus, \[ \mathbf{v}_2 \times \mathbf{v}_3 = \begin{bmatrix} 6 \cdot 9 - (-3) \cdot (-7) \\ (-3) \cdot (-4) - 0 \cdot 9 \\ 0 \cdot (-7) - 6 \cdot (-4) \end{bmatrix}. \] Calculating each component: - **First component:** \[ 6\cdot9 - (-3)\cdot(-7) = 54 - 21 = 33. \] - **Second component:** \[ (-3)\cdot(-4) - 0\cdot9 = 12 - 0 = 12. \] - **Third component:** \[ 0\cdot(-7) - 6\cdot(-4) = 0 + 24 = 24. \] Thus, \[ \mathbf{v}_2 \times \mathbf{v}_3 = \begin{bmatrix} 33 \\ 12 \\ 24 \end{bmatrix}. \] #### b. Compute the Dot Product \(\mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3)\) \[ \mathbf{v}_1 \cdot \begin{bmatrix} 33 \\ 12 \\ 24 \end{bmatrix} = 8 \cdot 33 + 5 \cdot 12 + 0 \cdot 24. \] Calculating, \[ 8 \cdot 33 = 264, \quad 5 \cdot 12 = 60, \quad 0 \cdot 24 = 0. \] Thus, \[ \mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3) = 264 + 60 + 0 = 324. \] ### Step 2. Determine the Volume of the Parallelepiped Taking the absolute value, \[ V_{\text{parallelepiped}} = \left| 324 \right| = 324. \] ### Step 3. Determine the Volume of the Tetrahedron The volume of the tetrahedron defined by the same three vectors is one-sixth of the parallelepiped volume: \[ V_{\text{tetrahedron}} = \frac{1}{6} V_{\text{parallelepiped}} = \frac{324}{6} = 54. \] ### Final Answer - The volume of the parallelepiped is \(324\). - The volume of the tetrahedron is \(54\).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the volume of the parallelepiped defined by the vectors \( \left[\begin{array}{l}8 \\ 5 \\ 0\end{array}\right],\left[\begin{array}{c}0 \\ 6 \\ -3\end{array}\right],\left[\begin{array}{c}-4 \\ -7 \\ 9\end{array}\right] \), you can calculate the scalar triple product, which can be computed as the absolute value of the determinant of the matrix formed by these vectors: \[ Volume = \left| \det \begin{bmatrix} 8 & 0 & -4 \\ 5 & 6 & -7 \\ 0 & -3 & 9 \end{bmatrix} \right| \] Calculating the determinant gives: \[ = 8(6 \cdot 9 - (-3)(-7)) - 0 + (-4)(5 \cdot (-3) - 6 \cdot 0) = 8(54 - 21) + 60 = 8(33) + 60 = 264 + 60 = 324 \] Thus, the volume of the parallelepiped is \( 324 \) cubic units. For the volume of the tetrahedron defined by the same vectors, the formula is simply one-sixth of the volume of the parallelepiped. Hence, you can calculate the tetrahedron's volume as follows: \[ Volume\ of\ Tetrahedron = \frac{1}{6} \cdot 324 = 54 \] So, the volume of the tetrahedron defined by those vectors is \( 54 \) cubic units. Now that you have your answers, here's a bit of fun knowledge: Did you know that parallelepipeds are like the 3D version of parallelograms? Just as a parallelogram derives its area from its base and height, a parallelepiped utilizes the same core idea but works in an extra dimension—where every face can be a parallelogram in its own right! For those captivated by shapes and volumes, the study of polyhedra can lead you down a fascinating path. Books like "Geometry Revisited" by H. S. M. Coxeter and "Flatland" by Edwin A. Abbott can open your eyes to a world where dimensions come alive, packed with mathematical prowess and imagination!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad