Pregunta
[-/1 Points] DETAILS MY NOTES SCALCET9 2.6.034. Find the limit. (If the limit is infinite, enter ' \( \infty \) ' or ' \( -\infty \) ', as appropriate. If the limit does not otherwise exist, enter DNE.) \[ \lim _{x \rightarrow \infty}\left(e^{-x}+9 \cos (5 x)\right) \]
Ask by Gibbs Page. in the United States
Feb 26,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
The limit does not exist (DNE).
Solución
We need to evaluate the limit as x approaches infinity for the expression e^(–x) + 9 cos(5x).
Step 1: Compute the limit of e^(–x) as x approaches infinity.
Since e^(–x) → 0 when x → ∞, we have:
lim (x→∞) e^(–x) = 0.
Step 2: Consider the term 9 cos(5x).
The cosine function oscillates between –1 and 1 for all x, so cos(5x) oscillates between –1 and 1 regardless of x.
When multiplied by 9, 9 cos(5x) oscillates between –9 and 9.
Since the oscillatory behavior persists and does not settle to a single value, the overall limit does not exist.
Final answer: DNE.
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Bonus Knowledge
As \( x \) approaches infinity, the term \( e^{-x} \) tends to \( 0 \) because the exponential function decays quickly. The term \( 9 \cos(5x) \), however, oscillates between \( -9 \) and \( 9 \), indicating that it does not settle on a single value. Therefore, as \( x \) heads towards infinity, the overall limit does not converge to a specific value. Thus, the limit is DNE (Does Not Exist).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium