Pregunta
upstudy study bank question image url

10. Demonstrate and explain how to find the derivative of the following functions. Be sure to explicitly denote which derivative rules (scalar multiple, sum/difference, quotient, etc.) you are using in your work. \( \begin{array}{l}\text { (g) } \\ f(w)=\frac{6 w^{2}-w-3}{w^{3}}\end{array} \)

Ask by Wells Harmon. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The derivative of \( f(w) = \frac{6w^{2} - w - 3}{w^{3}} \) is \( f '(w) = -6w^{-2} + 2w^{-3} + 9w^{-4} \) or \( f '(w) = \frac{-6w^{2} + 2w + 9}{w^{4}} \).

Solución

We are given   f(w) = (6w² – w – 3) / w³. One approach is to first rewrite f(w) as a sum of individual terms and then differentiate term‐by‐term using the power rule. Alternatively, you can use the quotient rule. We’ll show both methods. ────────────────────────────── Method 1: Rewriting the Expression Step 1. Rewrite f(w) by dividing each term in the numerator by w³:   f(w) = (6w²)/w³ – (w)/w³ – 3/w³     = 6w^(2–3) – w^(1–3) – 3w^(–3)     = 6w^(–1) – w^(–2) – 3w^(–3). Step 2. Differentiate f(w) term-by-term using the power rule. Recall that if f(w) = w^n, then f '(w)= n w^(n–1), and also remember the scalar multiple rule. • For 6w^(–1):   d/dw [6w^(–1)] = 6 · (–1) w^(–2) = –6w^(–2). • For –w^(–2):   d/dw [–w^(–2)] = – (–2) w^(–3) = 2w^(–3). • For –3w^(–3):   d/dw [–3w^(–3)] = –3 · (–3) w^(–4) = 9w^(–4). Step 3. Combine the results:   f '(w) = –6w^(–2) + 2w^(–3) + 9w^(–4). This can also be written as:   f '(w) = –6/w² + 2/w³ + 9/w⁴ or, combining into a single rational expression, multiply numerator and denominator by a common factor (here, w⁴):   f '(w) = (–6w² + 2w + 9) / w⁴. ────────────────────────────── Method 2: Using the Quotient Rule The quotient rule states that if f(w) = g(w)/h(w), then   f '(w) = [g '(w)h(w) – g(w)h '(w)] / [h(w)]². Let   g(w) = 6w² – w – 3  and  h(w) = w³. First, find the derivatives of g and h: • g '(w) = d/dw [6w² – w – 3] = 12w – 1. • h '(w) = d/dw [w³] = 3w². Now apply the quotient rule:   f '(w) = [(12w – 1) · w³ – (6w² – w – 3) · (3w²)] / (w³)². Simplify step-by-step: 1. Multiply out (12w – 1) · w³:   = 12w⁴ – w³. 2. Multiply out (6w² – w – 3) · (3w²):   = 18w⁴ – 3w³ – 9w². 3. Substitute back:   f '(w) = [12w⁴ – w³ – (18w⁴ – 3w³ – 9w²)] / w⁶.       = [12w⁴ – w³ – 18w⁴ + 3w³ + 9w²] / w⁶.       = [–6w⁴ + 2w³ + 9w²] / w⁶. 4. Factor w² from the numerator:   = w²(–6w² + 2w + 9) / w⁶. 5. Cancel w² with part of w⁶:   = (–6w² + 2w + 9) / w⁴. This is the same result as in Method 1. ────────────────────────────── Final Answer The derivative of f(w) is:   f '(w) = –6w^(–2) + 2w^(–3) + 9w^(–4) or equivalently,   f '(w) = (–6w² + 2w + 9) / w⁴. In our work we used:  • The quotient rule (in Method 2);  • Rewriting into power form and the scalar multiple rule and the power rule (in Method 1);  • And the sum/difference rule in differentiating term-by-term. This completes the demonstration and explanation.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the derivative of the function \( f(w)=\frac{6 w^{2}-w-3}{w^{3}} \), we can apply the quotient rule. The quotient rule states that if you have a function expressed as \( \frac{u(w)}{v(w)} \), its derivative is given by \( f'(w) = \frac{u'(w)v(w) - u(w)v'(w)}{(v(w))^2} \). Here, let \( u(w) = 6w^2 - w - 3 \) and \( v(w) = w^3 \). First, we find the derivatives: \( u'(w) = 12w - 1 \) and \( v'(w) = 3w^2 \). Applying the quotient rule, we have: \[ f'(w) = \frac{(12w - 1)(w^3) - (6w^2 - w - 3)(3w^2)}{(w^3)^2} \] This simplifies down to \( f'(w) = \frac{(12w - 1)w^3 - (18w^2 - 3w - 9)w^2}{w^6} \). Now you can further simplify the numerator for the final answer. By carefully breaking the pieces down using the quotient rule, you've got yourself a solid foundation for dealing with derivatives of rational functions! Happy differentiating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad