(e) (1) Simplify \( \sqrt{b+\sqrt{2 b-1} \cdot \sqrt{b-\sqrt{2 b-1} \text { where } b>1 \text {. }}} \begin{array}{l}\text { (2) Without using a calculator, express }(\sqrt{6}-\sqrt{12})^{2} \text { in the form } \\ a(b+c \sqrt{2}) \text { and hence state the value of } a, b \text { and } c \text {. } \\ \text { (3) If } a \text { and } b \text { are natural numbers such that } \frac{14}{\sqrt{63}-\sqrt{28}}=a \sqrt{b} \text {, } \\ \text { determine, without using a calculator, the value of } a \text { and } b \text {. } \\ \text { (4) Express } \frac{2}{\sqrt{3}}-\frac{\sqrt{3}}{2} \text { in the form } \frac{\sqrt{a}}{b} \text { where } b \neq 0 \text { and } \sqrt{a} \text { is a surd. }\end{array} \) (G11075
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify \( \sqrt{b+\sqrt{2b-1} \cdot \sqrt{b-\sqrt{2b-1}}} \), we observe that the inside can be reformulated using a specific algebraic identity. Recognizing that \( \sqrt{2b - 1} \) can be factored out considerably simplifies the overall expression, allowing us to rewrite it as \( \sqrt{b + (b - \sqrt{2b - 1})} \), leading to a more manageable square root. Now, let's express \( (\sqrt{6} - \sqrt{12})^{2} \). First, evaluating \( \sqrt{12} \) gives us \( 2\sqrt{3} \), so we can rewrite this as \( (\sqrt{6} - 2\sqrt{3})^{2} \). When expanding, we get \( 6 + 4 \cdot 3 - 4\sqrt{18} = 6 + 12 - 12\sqrt{2} \). Thus, this becomes \( 18 - 12\sqrt{2} \), which can be represented as \( 6(3 - 2\sqrt{2}) \). Therefore, \( a = 6 \), \( b = 3 \), and \( c = -2 \).