9) \( \sqrt[3]{\frac{1}{5}}: \sqrt[4]{\frac{2}{5}} \) (3 punti)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To simplify the expression \( \sqrt[3]{\frac{1}{5}}: \sqrt[4]{\frac{2}{5}} \), we first rewrite it as a fraction: \[ \frac{\sqrt[3]{\frac{1}{5}}}{\sqrt[4]{\frac{2}{5}}} \] This can be further simplified by expressing both roots as exponents: \[ \frac{\left(\frac{1}{5}\right)^{1/3}}{\left(\frac{2}{5}\right)^{1/4}} = \frac{1^{1/3} \cdot 5^{-1/3}}{2^{1/4} \cdot 5^{-1/4}} = \frac{5^{-1/3}}{2^{1/4} \cdot 5^{-1/4}} \] Now, combine the terms with base 5: \[ = \frac{5^{-1/3 + 1/4}}{2^{1/4}} \] Next, find a common denominator for \(-\frac{1}{3}\) and \(\frac{1}{4}\). The common denominator for 3 and 4 is 12: \[ -\frac{1}{3} = -\frac{4}{12} \quad \text{and} \quad \frac{1}{4} = \frac{3}{12} \] Thus, \[ -\frac{1}{3} + \frac{1}{4} = -\frac{4}{12} + \frac{3}{12} = -\frac{1}{12} \] Plugging that back into our expression gives: \[ = \frac{5^{-1/12}}{2^{1/4}} = \frac{1}{2^{1/4} \cdot 5^{1/12}} \] So, the final result simplifies to: \[ \frac{1}{\sqrt[4]{2} \cdot \sqrt[12]{5}} \] This calculation showcases the beauty of fractional exponents and roots in algebra!